Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biologically Active Compounds
2.2. Antioxidant Effects
2.3. Enzyme Inhibitory Activities
2.4. Cytotoxicity Evaluation
2.5. Antiviral Activitiy
3. Materials and Methods
3.1. Plant Material and Extraction Procedure
3.2. Total Content of Phenolics and Flavonoids
3.3. Antioxidant Properties and Enzyme Inhibition
3.4. LC-ESI-QTOF-MS/MS Analysis
3.5. Cell Assays
3.6. Cytotoxicity Assessment
3.7. Antiherpetic Assay and the Evaluation of HSV-1 Titer
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akgul, A.; Akgul, A.; Senol, S.G.; Yildirim, H.; Secmen, O.; Dogan, Y. An ethnobotanical study in Midyat (Turkey), a city on the silk road where cultures meet. J. Ethnobiol. Ethnomed. 2018, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Selseleh, M.; Nejad Ebrahimi, S.; Aliahmadi, A.; Sonboli, A.; Mirjalili, M.H. Metabolic profiling, antioxidant, and antibacterial activity of some Iranian Verbascum L. species. Ind. Crops Prod. 2020, 153, 112609. [Google Scholar] [CrossRef]
- Hroudová, Z.; Zákravský, P.; Hrouda, L.; Ostrý, I. Oenanthe aquatica (L.) Poir.: Seed reproduction, population structure, habitat conditions and distribution in Czechoslovakia. Folia Geobot. Phytotaxon. 1992, 27, 301–335. [Google Scholar] [CrossRef]
- Hançer, Ç.K.; Sevgi, E.; Altinbaşak, B.; Çakir, E.A.; Akkaya, M. Traditional knowledge of wild edible plants of Biga (Çanakkale), Turkey. Acta Soc. Bot. Pol. 2020, 89, 8914. [Google Scholar]
- Jodrugs. Available online: http://www.jodrugs.com/toxicologies/3636-plants-oenanthe.aspx (accessed on 12 August 2021).
- Vincieri, F.F.; Coran, S.A.; Bambagiotti, M. Composition of the Oenanthe aquatica essential oil. Planta Med. 1976, 29, 101–112. [Google Scholar] [CrossRef]
- Yang, X.B.; Huang, Z.M.; Cao, W.B.; Zheng, M.; Chen, H.Y.; Zhang, J.Z. Antidiabetic effect of Oenanthe javanica flavone. Acta Pharmacol. Sin. 2000, 21, 239–242. [Google Scholar] [PubMed]
- Kwon, D.; Yoon, S.; Carter, O.; Bailey, G.S.; Dashwood, R.H. Antioxidant and antigenotoxic activities of Angelica keiskei, Oenanthe javanica and Brassica oleracea in the Salmonella mutagenicity assay and in HCT116 human colon cancer cells. BioFactors 2006, 26, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.-R.; Hwang, I.-G.; Kim, H.-Y.; Kang, T.-S.; Kim, Y.-B.; Joo, S.-S.; Lee, J.-S.; Jeong, H.-S. Antioxidant component and activity of dropwort (Oenanthe javanica) ethanol extracts. J. Korean Soc. Food Sci. Nutr. 2011, 40, 316–320. [Google Scholar] [CrossRef]
- Han, Y.-Q.; Huang, Z.-M.; Yang, X.-B.; Liu, H.-Z.; Wu, G.-X. In vivo and in vitro anti-hepatitis B virus activity of total phenolics from Oenanthe javanica. J. Ethnopharmacol. 2008, 118, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Seo, W.H.; Baek, H.H. Identification of Characteristic Aroma-Active Compounds from Water Dropwort (Oenanthe javanica DC.). J. Agric. Food Chem. 2005, 53, 6766–6770. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-C.; Yu, Y.-B.; Lee, J.-H. Isolation of Steroids and Flavonoids from the Herb of Oenanthe javanica Dc. Korean J. Pharmacogn. 1993, 24, 244–246. [Google Scholar]
- Lu, C.-L.; Li, X.-F. A review of Oenanthe javanica (Blume) DC. as traditional medicinal plant and its therapeutic potential. Evid. Based Complement. Alternat. Med. 2019, 2019, 6495819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-J.; Kong, K.-M.; Qi, W.-L.; Ye, W.-L.; Song, P.-S. Interleukin-1 beta induction of neuron apoptosis depends on p38 mitogen-activated protein kinase activity after spinal cord injury. Acta Pharmacol. Sin. 2005, 26, 934–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.G.; Wei, R.R.; Sang, Z.P. Biphenyl Derivatives from the Aerial Parts of Oenanthe javanica and Their COX-2 Inhibitory Activities. Chem. Biodivers. 2019, 16, e1800480. [Google Scholar] [CrossRef] [Green Version]
- Her, Y.; Shin, B.-N.; Lee, Y.L.; Park, J.H.; Kim, D.W.; Kim, K.S.; Kim, H.; Song, M.; Kim, J.-D.; Won, M.-H. Oenanthe javanica extract protects mouse skin from UVB radiation via attenuating collagen disruption and inflammation. Int. J. Mol. Sci. 2019, 20, 1435. [Google Scholar] [CrossRef] [Green Version]
- Bicchi, C.; Rubiolo, P.; Ballero, M.; Sanna, C.; Matteodo, M.; Esposito, F.; Zinzula, L.; Tramontano, E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata. Planta Med. 2009, 75, 1331–1335. [Google Scholar] [CrossRef]
- Schep, L.J.; Slaughter, R.J.; Becket, G.; Beasley, D.M.G. Poisoning due to water hemlock. Clin. Toxicol. 2009, 47, 270–278. [Google Scholar] [CrossRef]
- Authority, E.F.S. Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. EFSA J. 2012, 10, 2663. [Google Scholar] [CrossRef] [Green Version]
- Bakhouche, I.; Aliat, T.; Boubellouta, T.; Gali, L.; Şen, A.; Bellik, Y. Phenolic contents and in vitro antioxidant, anti-tyrosinase, and anti-inflammatory effects of leaves and roots extracts of the halophyte Limonium delicatulum. S. Afr. J. Bot. 2021, 139, 42–49. [Google Scholar] [CrossRef]
- El Aanachi, S.; Gali, L.; Nacer, S.N.; Bensouici, C.; Dari, K.; Aassila, H. Phenolic contents and in vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. Biocatal. Agric. Biotechnol. 2020, 29, 101819. [Google Scholar] [CrossRef]
- Fettach, S.; Mrabti, H.N.; Sayah, K.; Bouyahya, A.; Salhi, N.; Cherrah, Y.; El Abbes, F.M. Phenolic content, acute toxicity of Ajuga iva extracts and assessment of their antioxidant and carbohydrate digestive enzyme inhibitory effects. S. Afr. J. Bot. 2019, 125, 381–385. [Google Scholar] [CrossRef]
- Herrera-Pool, E.; Ramos-Díaz, A.L.; Lizardi-Jiménez, M.A.; Pech-Cohuo, S.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pacheco, N. Effect of solvent polarity on the Ultrasound Assisted extraction and antioxidant activity of phenolic compounds from habanero pepper leaves (Capsicum chinense) and its identification by UPLC-PDA-ESI-MS/MS. Ultrason. Sonochem. 2021, 76, 105658. [Google Scholar] [CrossRef] [PubMed]
- Bhaigyabati, T.; Devi, P.G.; Devi, N.R.; Bag, G.C. Antioxidant activity, total phenolic and total flavonoid content of Oenanthe javanica Blume (DC) collected from Imphal West District. Int. Reseach J. Pharm 2017, 8, 63–68. [Google Scholar] [CrossRef]
- He, S.D.; Tang, M.M.; Zhang, Z.Y.; Liu, H.Y.; Luo, M.F.; Sun, H.J. Hypoglycemic effects of phenolic compound-rich aqueous extract from water dropwort (Oenanthe javanica DC.) on streptozotocin-induced diabetic mice. N. J. Chem. 2020, 44, 5190–5200. [Google Scholar] [CrossRef]
- Lee, K.; Padzil, A.; Syahida, A.; Abdullah, N.; Zuhainis, S.; Maziah, M.; Sulaiman, M.; Israf, D.; Shaari, K.; Lajis, N. Evaluation of anti-inflammatory, antioxidant and anti-nociceptive activities of six Malaysian medicinal plants. J. Med. Plants Res. 2011, 5, 5555–5563. [Google Scholar]
- Rafat, A.; Philip, K.; Muniandy, S. Antioxidant potential and phenolic content of ethanolic extract of selected Malaysian plants. Res. J. Biotechnol. 2010, 5, 16–19. [Google Scholar]
- Souilah, N.; Bendif, H.; Ullah, Z.; Miara, M.D.; Laib, M.; Akkal, S.; Medjroubi, K.; Mustafa, A.M. LC-MS/MS Profiling of 37 Fingerprint Phytochemicals in Oenanthe fistulosa L. and its Biological Activities. Nat. Prod. J. 2021, 11, 63–73. [Google Scholar] [CrossRef]
- Murata, T.; Katagiri, T.; Ishikawa, Y.; Abe, M.; Takahashi, E.; Iwahana, R.; Sakamoto, Y.; Sasaki, K. Inhibitory effects of phenylpropanoid derivatives from Oenanthe javanica on antigen-stimulated degranulation in RBL-2H3 cells. J. Nat. Prod. 2019, 82, 1518–1526. [Google Scholar] [CrossRef]
- Fujita, T.; Kadoya, Y.; Aota, H.; Nakayama, M. A new phenylpropanoid glucoside and other constituents of Oenanthe javanica. Biosci. Biotechnol. Biochem. 1995, 59, 526–528. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Sinan, K.I.; Ferrarese, I.; Sut, S.; Bene, K.; Mahomoodally, M.F.; Bibi Sadeer, N.; Ak, G.; Zengin, G. Chromatographic Separation of Breynia retusa (Dennst.) Alston Bark, Fruit and Leaf Constituents from Bioactive Extracts. Molecules 2020, 25, 5537. [Google Scholar] [CrossRef]
- Sinan, K.I.; Mahomoodally, M.F.; Eyupoglu, O.E.; Etienne, O.K.; Sadeer, N.B.; Ak, G.; Behl, T.; Zengin, G. HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp. J. Pharm. Biomed. Anal. 2021, 192, 113678. [Google Scholar] [CrossRef]
- Chiavaroli, A.; Sinan, K.I.; Zengin, G.; Mahomoodally, M.F.; Bibi Sadeer, N.; Etienne, O.K.; Cziáky, Z.; Jekő, J.; Glamočlija, J.; Soković, M. Identification of Chemical Profiles and Biological Properties of Rhizophora racemosa G. Mey. Extracts Obtained by Different Methods and Solvents. Antioxidants 2020, 9, 533. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Sinan, K.I.; Cziáky, Z.; Jekő, J.; Zengin, G.; Jeewon, R.; Abdallah, H.H.; Rengasamy, K.R.; Mahomoodally, M.F. Assessment of the Pharmacological Properties and Phytochemical Profile of Bruguiera gymnorhiza (L.) Lam Using In Vitro Studies, In Silico Docking, and Multivariate Analysis. Biomolecules 2020, 10, 731. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Segura Campos, M.R.; Ruiz Ruiz, J.; Chel-Guerrero, L.; Betancur Ancona, D. Coccoloba uvifera (L.) (Polygonaceae) Fruit: Phytochemical Screening and Potential Antioxidant Activity. J. Chem. 2015, 2015, 534954. [Google Scholar] [CrossRef] [Green Version]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 16021. [Google Scholar] [CrossRef] [Green Version]
- Ricciutelli, M.; Bartolucci, G.; Campana, R.; Salucci, S.; Benedetti, S.; Caprioli, G.; Maggi, F.; Sagratini, G.; Vittori, S.; Lucarini, S. Quantification of 2- and 3-isopropylmalic acids in forty Italian wines by UHPLC-MS/MS triple quadrupole and evaluation of their antimicrobial, antioxidant activities and biocompatibility. Food Chem. 2020, 321, 126726. [Google Scholar] [CrossRef] [PubMed]
- Lauberte, L.; Fabre, G.; Ponomarenko, J.; Dizhbite, T.; Evtuguin, D.V.; Telysheva, G.; Trouillas, P. Lignin Modification Supported by DFT-Based Theoretical Study as a Way to Produce Competitive Natural Antioxidants. Molecules 2019, 24, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velika, B.; Kron, I. Antioxidant properties of benzoic acid derivatives against Superoxide radical. Free Radic. Antioxid. 2012, 2, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Plumb, G.W.; Price, K.R.; Williamson, G. Antioxidant properties of flavonol glycosides from green beans. Redox Rep. 1999, 4, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Deri, B.; Kanteev, M.; Goldfeder, M.; Lecina, D.; Guallar, V.; Adir, N.; Fishman, A. The unravelling of the complex pattern of tyrosinase inhibition. Sci. Rep. 2016, 6, 34993. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.C.; Ramesh, N.; Sreevatsan, S.; Joseph, B.; Alle, P.; Belani, K.G.; Osterholm, M.T. Knowledge, attitudes, and poultry-handling practices of poultry workers in relation to avian influenza in India. Indian J. Occup. Environ. Med. 2013, 17, 16. [Google Scholar] [CrossRef] [Green Version]
- Łaska, G.; Sieniawska, E.; Świątek, Ł.; Zjawiony, J.; Khan, S.; Boguszewska, A.; Stocki, M.; Angielczyk, M.; Polz-Dacewicz, M. Phytochemistry and biological activities of Polemonium caeruleum L. Phytochem. Lett. 2019, 30, 314–323. [Google Scholar] [CrossRef]
- Chae, W.-S.; Cha, C.-N.; Yoo, C.-Y.; Kim, S.; Lee, H.-J. Virucidal efficacy of a disinfectant solution composed of citric acid, malic acid and phosphoric acid against avian influenza virus. J. Prev. Vet. Med. 2018, 42, 16–21. [Google Scholar] [CrossRef]
- Hayden, G.F.; Gwaltney, J.M., Jr.; Thacker, D.F.; Hendley, J.O. Rhinovirus inactivation by nasal tissues treated with virucide. Antivir. Res. 1985, 5, 103–109. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 2017, 7, 45723. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Elhassan Taha, M.M.; Makeen, H.A.; Alhazmi, H.A.; Al Bratty, M.; Sultana, S.; Ahsan, W.; Najmi, A.; Khalid, A. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. Molecules 2020, 25, 4878. [Google Scholar] [CrossRef]
- Zhou, W.; Yin, A.; Shan, J.; Wang, S.; Cai, B.; Di, L. Study on the rationality for antiviral activity of Flos Lonicerae Japonicae-Fructus Forsythiae herb couple preparations improved by chito-oligosaccharide via integral pharmacokinetics. Molecules 2017, 22, 654. [Google Scholar] [CrossRef] [Green Version]
- Chiang, L.; Chiang, W.; Chang, M.; Ng, L.; Lin, C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir. Res. 2002, 55, 53–62. [Google Scholar] [CrossRef]
- Wang, G.-F.; Shi, L.-P.; Ren, Y.-D.; Liu, Q.-F.; Liu, H.-F.; Zhang, R.-J.; Li, Z.; Zhu, F.-H.; He, P.-L.; Tang, W. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 2009, 83, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Mahrosh, H.S.; Mustafa, G. An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals. Environ. Dev. Sustain. 2021, 23, 16674–16687. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Tsujimoto, K.; Uozaki, M.; Nishide, M.; Suzuki, Y.; Koyama, A.H.; Yamasaki, H. Inhibition of multiplication of herpes simplex virus by caffeic acid. Int. J. Mol. Med. 2011, 28, 595–598. [Google Scholar] [PubMed] [Green Version]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Zengin, G.; Sieniawska, E.; Senkardes, I.; Picot-Allain, M.C.N.; Ibrahime Sinan, K.; Fawzi Mahomoodally, M. Antioxidant abilities, key enzyme inhibitory potential and phytochemical profile of Tanacetum poteriifolium Grierson. Ind. Crops Prod. 2019, 140, 111629. [Google Scholar] [CrossRef]
- Świątek, Ł.; Sieniawska, E.; Sinan, K.I.; Maciejewska-Turska, M.; Boguszewska, A.; Polz-Dacewicz, M.; Senkardes, I.; Guler, G.O.; Bibi Sadeer, N.; Mahomoodally, M.F. LC-ESI-QTOF-MS/MS Analysis, Cytotoxic, Antiviral, Antioxidant, and Enzyme Inhibitory Properties of Four Extracts of Geranium pyrenaicum Burm. f.: A Good Gift from the Natural Treasure. Int. J. Mol. Sci. 2021, 22, 7621. [Google Scholar] [CrossRef]
Samples | Extraction Yields (%) | TPC (mg GAE/g) | TFC (mg RE/g) | PBD (mmol TE/g) |
---|---|---|---|---|
O. aquatica-MeOH | 6.88 | 39.05 ± 0.76 c | 42.35 ± 2.16 a | 1.38 ± 0.16 ab |
O. aquatica-Water | 10.39 | 60.85 ± 0.38 a | 14.84 ± 0.06 c | 1.60 ± 0.13 a |
O. silaifolia-MeOH | 6.82 | 36.76 ± 0.05 d | 27.08 ± 0.70 b | 1.35 ± 0.12 ab |
O. silaifolia-Water | 8.74 | 46.91 ± 0.32 b | 11.58 ± 0.15 d | 1.27 ± 0.07 b |
No | Retention Time [Min] | Name | Formula | Molecular Ion [M-H]− | Fragmentation Ions | O. aquatica-MeOH | O. aquatica-Water | O. silaifolia-MeOH | O. silaifolia-Water |
---|---|---|---|---|---|---|---|---|---|
1 | 1.969 | Caffeic acid hexoside derivative | C15H18O9 | 377.0901 | 341.1129; 215.0327; 179.0637 | + | − | + | − |
2 | 1.921 | Malic acid | C4H6O5 | 133.0161 | 115.0014; 71.0123 | + | + | − | + |
3 | 1.266 | Citric acid | C6H8O7 | 191.0218 | 129.0157; 111.0072 | + | − | − | + |
4 | 7.476 | Dihydroxybenzoic acid | C7H6O4 | 153.0208 | 109.0302; 108.0203; 91.0152; 53.0379 | + | + | + | − |
5 | 8.092 | Hydroxybenzoic acid glucoside | C7H6O3 | 299.0816 | 137.0260; 119.0373 | + | − | − | − |
6 | 8.390 | 2-Isopropylmalic acid | C7H12O5 | 175.0613 | 115.0413; 85.0679 | + | + | − | − |
7 | 8.927 | Vanillylmandelic acid hexoside | C15H20O10 | 359.1019 | 197.0473; 153.0544; 138.0293 | + | + | − | − |
8 | 9.531 | Hydroxybenzoic acid | C7H6O3 | 137.0267 | 108.0221 | + | + | + | − |
9 | 9.562 | Neochlorogenic acid | C16H18O9 | 353.0918 | 191.0630; 179.0335; 135.0439 | − | + | − | + |
10 | 10.376 | Caffeic acid glucoside | C15H18O9 | 341.0955 | 179.0382; 161.0231 | + | + | + | − |
11 | 10.751 | Aesculin | C15H16O9 | 339.0763 | 177.0214; 133.0305 | + | + | + | − |
12 | 14.506 | Hydroxybenzoic acid isomer | C7H6O3 | 137.0263 | 108.0191 | + | + | − | − |
13 | 15.120 | Aesculetin | C9H6O4 | 177.0226 | 133.0311; 105.0374 | + | − | + | − |
14 | 15.487 | Chlorogenic acid | C16H18O9 | 353.0929 | 191.0596 | + | + | + | + |
15 | 16.147 | Cryptochlorogenic acid | C16H18O9 | 353.0885 | 191.0569; 179.0364; 173.0466; 135.0435 | − | + | − | + |
16 | 16.312 | Caffeic acid | C9H8O4 | 179.0381 | 135.0462; 107.0457 | + | + | + | + |
17 | 19.856 | Feruoyloquinic acid | C17H20O9 | 367.1081 | 191.0575; 173.0467 | + | + | + | + |
18 | 20.683 | Ethyl syringate hexoside | C17H24O10 | 387.1356 | 225.0788; 210.0539; 180.0449 | + | − | − | − |
19 | 21.640 | Unknown | 467.1638 | 241.0053; 996.9607 | + | + | + | + | |
20 | 22.875 | Caffeic acid derivative hexoside | 365.0554 | 203.0300; 185.0198; 179.0407; 141.0227; 135.0477 | + | + | + | + | |
21 | 23.380 | Rutin | C27H30O16 | 609.1517 | 300.0251; 271.0206; 255.0227; 179.0006; 150.9982 | + | + | + | − |
22 | 24.105 | Isoquercetin | C21H20O12 | 463.0928 | 300.0268; 271.0233; 255.0312; 151.0060 | + | + | + | − |
23 | 25.108 | Kaempferol rutinoside | C27H30O15 | 593.1565 | 285.0431; 255.0307; 229.0351 | + | + | − | − |
24 | 25.754 | 3-O-rhamnetin rutinoside | C28H32O16 | 623.1666 | 315.0511 | + | − | + | + |
25 | 26.547 | Dicaffeoyloquinic acid | C22H28O14 | 515.1206 | 353.0935; 191.0560; 179.0351; 173.0452 | + | + | + | − |
26 | 27.190 | Luteolin derivative | 635.1667 | 285.0370 | + | − | + | − | |
27 | 29.912 | Unknown | 449.1527 | 363.0728; 241.0030; 96.9611 | + | + | + | + | |
28 | 32.700 | Caffeic acid methyl ester derivative | C11H22O11 | 329.1074 | 193.1355; 179.0328; 161.0244; 135.0466 | + | + | + | − |
29 | 34.487 | Luteolin | C15H10O6 | 285.0443 | 133.0236; 117.0339 | + | − | + | − |
30 | 34.657 | 3-O-methyl quercetin | C16H12O7 | 315.0551 | 300.0262; 271.0323; 255.0307; 151.0014; 108.0244 | + | − | + | − |
31 | 41.611 | Quercetin 7-O-trirhamnoside | C32H36O20 | 739.1740 | 593.1260; 301.0337; 271.0268; 179.9964; 151.0032 | + | − | − | − |
32 | 46.525 | Hydroxylinolenic acid | C18H30O3 | 293.2109 | 275.2109; 171.1001; 121.0979 | + | + | + | + |
33 | 49.117 | Hydroxylinoleic acid | C18H32O3 | 295.2324 | 277.2170; 171.1023; 123.1179 | + | + | + | + |
Samples | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE/g) |
---|---|---|---|---|---|
O. aquatica-MeOH | 50.58 ± 1.03 c | 74.15 ± 1.74 c | 147.08 ± 7.62 b | 73.65 ± 0.26 c | 16.46 ± 0.56 c |
O. aquatica-Water | 79.46 ± 0.40 a | 148.66 ± 2.17 a | 207.59 ± 1.82 a | 107.27 ± 0.55 a | 33.91 ± 0.84 a |
O. silaifolia-MeOH | 39.07 ± 0.98 d | 77.55 ± 2.94 c | 88.62 ± 2.01 c | 62.04 ± 0.66 d | 11.15 ± 0.60 d |
O. silaifolia-Water | 66.34 ± 3.49 b | 118.28 ± 0.53 b | 155.19 ± 2.24 b | 83.02 ± 0.58 b | 28.37 ± 0.83 b |
Samples | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|
O. aquatica-MeOH | 3.67 ± 0.15 a | 5.96 ± 0.52 a | 126.66 ± 0.95 a | 0.83 ± 0.02 a | 0.16 ± 0.04 c |
O. aquatica-Water | na | na | 6.31 ± 0.81 b | 0.15 ± 0.01 c | 0.26 ± 0.03 bc |
O. silaifolia-MeOH | 3.35 ± 019 b | 6.11 ± 0.41 a | 126.60 ± 1.88 a | 0.72 ± 0.03 b | 0.40 ± 0.06 a |
O. silaifolia-Water | na | na | 4.82 ± 0.17 b | 0.13 ± 0.01 c | 0.28 ± 0.03 b |
Plant | Solvent–Sample | VERO | FaDu | HeLa | RKO | |||
---|---|---|---|---|---|---|---|---|
CC50 * | CC50 | SI ** | CC50 | SI | CC50 | SI | ||
Oenanthe aquatica | methanol–OA-M | 340.52 ± 22.83 | 142.13 ± 10.46 | 2.40 | 123.47 ± 14.35 | 2.76 | 209.73 ± 17.84 | 1.62 |
water–OA-A | >1000 | 57.36 ± 7.21 | >17.43 | 47.16 ± 3.44 | >21.2 | 1001.47 ± 63.84 | >1 | |
Oenanthe silaifolia | methanol–OS-M | 252.6 ± 32.05 | 129.33 ± 15.27 | 1.95 | 74.24 ± 9.48 | 3.40 | 135.8 ± 4.11 | 1.86 |
water–OS-A | >1000 | 90.35 ± 5.08 | >11.07 | 101.31 ± 22.82 | >9.87 | 552.73 ± 37.56 | >1.81 |
Substance | Solvent [Sample] | Concentration (µg/mL) | Reduction of HSV-1 Infectious Titer (Δlog) * |
---|---|---|---|
Oenanthe aquatica | methanol [OA-M] | 200 | 2.29 ± 0.46 |
150 | 1.56 ± 0.13 | ||
100 | 0.73 ± 0.1 | ||
water [OA-A] | 1000 | >3 | |
500 | 2.05 ± 0.35 | ||
250 | 0.57 ± 0.23 | ||
Oenanthe silaifolia | methanol [OS-M] | 150 | 1.1 ± 0.33 |
100 | 0.38 ± 0.08 | ||
water [OA-A] | 1000 | >3 | |
500 | 1.81 ± 0.26 | ||
250 | 0.3 ± 0.05 | ||
Acyclovir | n/a [ACV] | 60 | >3 |
30 | 2.05 ± 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątek, Ł.; Sieniawska, E.; Mahomoodally, M.F.; Sadeer, N.B.; Wojtanowski, K.K.; Rajtar, B.; Polz-Dacewicz, M.; Paksoy, M.Y.; Zengin, G. Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia). Pharmaceuticals 2022, 15, 50. https://doi.org/10.3390/ph15010050
Świątek Ł, Sieniawska E, Mahomoodally MF, Sadeer NB, Wojtanowski KK, Rajtar B, Polz-Dacewicz M, Paksoy MY, Zengin G. Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia). Pharmaceuticals. 2022; 15(1):50. https://doi.org/10.3390/ph15010050
Chicago/Turabian StyleŚwiątek, Łukasz, Elwira Sieniawska, Mohamad Fawzi Mahomoodally, Nabeelah Bibi Sadeer, Krzysztof Kamil Wojtanowski, Barbara Rajtar, Małgorzata Polz-Dacewicz, Mehmet Yavuz Paksoy, and Gokhan Zengin. 2022. "Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia)" Pharmaceuticals 15, no. 1: 50. https://doi.org/10.3390/ph15010050
APA StyleŚwiątek, Ł., Sieniawska, E., Mahomoodally, M. F., Sadeer, N. B., Wojtanowski, K. K., Rajtar, B., Polz-Dacewicz, M., Paksoy, M. Y., & Zengin, G. (2022). Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia). Pharmaceuticals, 15(1), 50. https://doi.org/10.3390/ph15010050