Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Location
2.2. Measurements
2.3. Data Analysis
3. Results and Discussion
3.1. Nutritive Value
3.2. Correlation of Forage Quality with Broadband Reflectance
3.3. Relationships between Simple Ratio of Reflectance and Forage Quality Variables
3.4. Relationships between Broadband Reflectance and Forage Quality Variables
4. Conclusions
References and Notes
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar]
- Tarr, A.B.; Moore, K.J.; Dixon, P.M. Spectral reflectance as a covariate for estimating pasture productivity and composition. Crop Sci. 2005, 45, 996–1003. [Google Scholar]
- Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron. J. 2002, 94, 1215–1221. [Google Scholar]
- Xu, H.R.; Ying, Y.B.; Fu, X.P.; Zhu, S.P. Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf. Biosyst. Eng. 2007, 96, 447–454. [Google Scholar]
- Al-Abbas, A.H.; Barr, R.; Hall, J.D.; Crane, F.L.; Baumgardner, MF. Spectra of normal and nutrient-deficient maize leaves. Agron. J. 1974, 66, 16–20. [Google Scholar]
- Thomas, J.R.; Oerther, G.F. Generic combustion method for determination of crude protein in feeds: Collaborative study. J. Assoc. Off. Anal. Chem. 1972, 72, 770–774. [Google Scholar]
- Ponzoni, F.J.; Goncalves, J.L. Spectral features associated with nitrogen, phosphorous, and potassium deficiencies in Eucalyptus saligna seedling leaves. Int. J. Remote Sens. 1999, 20, 2249–2264. [Google Scholar]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar]
- Salisbury, F.B.; Ross, C.W. Plant physiology; Wadsworth Publishing: Belmont, CA, 1985. [Google Scholar]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar]
- Everitt, J.H.; Richardson, A.J.; Gausman, H.V. Leaf reflectance nitrogen chlorophyll relations in buffelgrass. Photogramm. Eng. Remote Sens. 1985, 51, 463–466. [Google Scholar]
- Lamb, D.W.; Steyn-Ross, M.; Schaare, P.; Hana, M.M.; Silvester, W.; Steyn-Coss, A. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modeling and experimental observations. Int. J. Remote Sens. 2002, 23, 3619–3648. [Google Scholar]
- Starks, P.J.; Coleman, S.W.; Philips, W.A. Determination of forage chemical composition using remote sensing. J. Range Manage. 2004, 57, 635–640. [Google Scholar]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Read, J.J.; Koti, S. Canopy reflectance in cotton for growth assessment and lint yield prediction. Europ. J. Agron. 2007, 26, 335–344. [Google Scholar]
- Rowell, D.R. Soil Science: Methods and Applications; Longman: Harlow; Prentice Hall Inc: New Jersey, US, 1996. [Google Scholar]
- Kacar, B.; İnal, A. Bitki Analizleri; Nobel Yayınları: Ankara, Turkey, 2008; p. 1241. [Google Scholar]
- A.O.A.C. Official methods of analysis, 15th edition; Helrich, K., Ed.; AOAC Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- SAS Institute. INC SAS/STAT users' guide release 7.0; STATS Publishing Inc.: Cary, NC, USA, 1998. [Google Scholar]
- Karsl₁, M.A.; Denek, N.; Deniz, S.; Gündüz, A.Ş. Evaluation of Nutritive Value of Forages Grown around Van Lake. YYÜ. Vet. Fak. Derg. 2002, 13, 25–30. [Google Scholar]
- Parker, R.J.; Moss, B.R. Nutritional Value of Sainfoin Hay Compared with Alfalfa Hay. J. Dairy Sci. 1981, 64, 206–210. [Google Scholar]
- Starks, P.J.; Zhao, D.; Phillips, W.A.; Coleman, S.W. Development of canopy reflectance algorithms for real-time prediction of bermudagrass pasture biomass and nutritive values. Crop Sci. 2006, 46, 927–934. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationship between NDVI, canopy structure and photosynthesis in three California vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar]
- Penuelas, J.; Filella, I. Visible and near-infreared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar]
- Starks, P.J.; Zhao, D.; Phillips, W.A.; Coleman, S.W. Herbage mass, nutritive value and canopy spectral reflectance of bermudagrass pastures. Grass Forage Sci. 2006, 61, 101–111. [Google Scholar]
- Aase, J.K.; Tanaka, D.L. Effects of tillage practices on soil and wheat spectral reflectance. Agron. J. 1984, 76, 814–818. [Google Scholar]
- Stone, M.L.; Solie, J.B; Raun, W.R.; Whitney, R.W.; Taylor, S.L.; Ringer, J.D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. ASAE 1996, 39, 623–1631. [Google Scholar]
- Park, D.M.; Cisar, J.L.; Williams, K.E.; McDermitt, D.K.; Miller, W.P.; Fidanza, M.A. Using spectral reflectance to document water stress in bermudagrass grown on water repellent sandy soils. Hydrol. Proc. 2007, 21, 2385–2389. [Google Scholar]
- Xu, H.R.; Ying, Y.B.; Fu, X.P.; Zhu, S.P. Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf. Biosys. Eng. 2007, 96, 447–454. [Google Scholar]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 1996, 88, 1–5. [Google Scholar]
- Başayiğit, L.; Albayrak, S. The use of the reflectance measurement to predict the N, P and K content of wollypod vetch under different N,P and K fertilization. Asian J. Chem. 2007, 19, 5609–5619. [Google Scholar]
- Bausch, W.C.; Land, D.M.; Blue, M.C. Robotic data acquisition of directional reflectance factors. Remote Sens. Environ. 1990, 30, 159–168. [Google Scholar]
- Duggin, M.J. The field measurement of reflectance factors. Photogram. Eng. Remote Sens. 1980, 46, 643–647. [Google Scholar]
- Hinzman, L.D.; Bauer, M.E.; Daughtry, C.S.T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens. Environ. 1986, 19, 47–61. [Google Scholar]
- Diker, K.; Bausch, W.C. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosys. Eng. 2003, 85, 437–447. [Google Scholar]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schemmer, M.R.; Major, D.J. Use of remote imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Peterson, D.L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sens. Environ. 2001, 76, 349–359. [Google Scholar]
- Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens. Environ. 2003, 84, 437–456. [Google Scholar]
- Martin, M.E.; Aber, J.D. High resolution remote sensing of forest canopy lignin, nitrogen and ecosystem process. Ecol. Appl. 1997, 7, 431–443. [Google Scholar]
- Serrano, L.; Penuelas, J.; Ustin, S. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar]
- Katz, J.J.; Dougherty, R.C.; Boucher, L.J. Infrared and nuclear magnetic resonance spectroscopy of chlorophyll. In The chlorophylls; Vernon, L. P., Seely, G. R., Eds.; Academic Press: New York, US, 1966; pp. 186–249. [Google Scholar]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Reddy, V.R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur. J. Agron. 2005, 22, 391–403. [Google Scholar]
Parameter | N | P | K | ADF | NDF |
---|---|---|---|---|---|
Maximum | 3.54 | 0.94 | 2.88 | 37.76 | 44.21 |
Minimum | 2.15 | 0.16 | 1.03 | 27.54 | 35.43 |
Mean | 2.74 | 0.50 | 1.66 | 32.46 | 39.53 |
SD | 0.40 | 0.22 | 0.52 | 2.60 | 2.20 |
CV (%) | 14.64 | 44.21 | 31.05 | 8.02 | 5.56 |
Quality parameter | Equation | Standard error | 2 |
---|---|---|---|
NIR/RED | |||
N (%) | N = 2.19+0.07×(R780/650) | 0.209 | 0.73*** |
P (%) | P = 0.21+0.04×(R780/650) | 0.125 | 0.69*** |
K (%) | K = 0.93+0.09×(R780/650) | 0.232 | 0.80*** |
ADF (%) | ADF = 35.66-0.39×(R780/650) | 1.989 | 0.61*** |
NDF (%) | NDF = 42.24-0.33×(R780/650) | 1.387 | 0.61*** |
First derivatives of NIR/RED | |||
N (%) | N = 1.41+0.002×(R760/630) | 0.172 | 0.82*** |
P (%) | P = -0.23+0.001×(R760/630) | 0.099 | 0.80*** |
K (%) | K = -0.07+0.003×(R760/630) | 0.208 | 0.84*** |
ADF (%) | ADF = 40.76-0.01×(R760/630) | 1.298 | 0.76*** |
NDF (%) | NDF = 46.28-0.01×(R760/630) | 1.210 | 0.70*** |
Quality parameter | Equation | Standard error | r2 |
---|---|---|---|
NDVI | |||
N (%) | N = 0.83+2.66×(R NDVI) | 0.183 | 0.80*** |
P (%) | P = -0.54+1.46×(R NDVI) | 0.105 | 0.78*** |
K (%) | K = -0.69+3.27×(R NDVI) | 0.270 | 0.73*** |
ADF (%) | ADF = 44.19-16.35×(R NDVI) | 1.654 | 0.72*** |
NDF (%) | NDF = 49.50-13.88×(R NDVI) | 1.165 | 0.72*** |
First derivatives of NDVI | |||
N (%) | N = -350.89+355.01×(R NDVI) | 0.173 | 0.82*** |
P (%) | P = -195.3+196.56×(R NDVI) | 0.095 | 0.82*** |
K (%) | K = -436.89+440.25×(R NDVI) | 0.253 | 0.76*** |
ADF (%) | ADF = 2291.77-2268.08×(R NDVI) | 1.196 | 0.79*** |
NDF (%) | NDF = 1914.88-1882.63×(R NDVI) | 1.069 | 0.77*** |
Quality parameter | Equation | Standard error | r2 |
---|---|---|---|
Reflectance | |||
N (%) | N = 0.54+4.24×(R780) | 0.168 | 0.83*** |
P (%) | P = -0.70+2.32×(R780) | 0.097 | 0.81*** |
K (%) | K = -1.02+5.17×(R780) | 0.262 | 0.75*** |
ADF (%) | ADF = 46.38-26.85×(R780) | 1.209 | 0.79*** |
NDF (%) | NDF = 50.46-21.08×(R780) | 1.249 | 0.68*** |
First derivatives of reflectance | |||
N (%) | N = 0.02+402.76×(R760) | 0.164 | 0.84*** |
P (%) | P = -1.04+228.56×(R760) | 0.077 | 0.88*** |
K (%) | K = -1.73+500.97×(R760) | 0.241 | 0.79*** |
ADF (%) | ADF = 50.82-2716.2×(R760) | 0.812 | 0.90*** |
NDF (%) | NDF = 54.58-2226.52×(R760) | 0.848 | 0.85*** |
Quality parameter | Equation | SE | r2 |
---|---|---|---|
Stepwise regression of reflectance | |||
N (%) | N = 1.61-2.20×(R460)+0.55×(R550)-2.47×(R650)+2.79×(R780) | 0.163 | 0.85*** |
P (%) | P = 0.20-2.28×(R460)-0.73×(R550)-0.53×(R650)+1.18×(R780) | 0.090 | 0.85*** |
K (%) | K = 1.09-2.79×(R460)-1.17×(R550)-4.28×(R650)+2.45×(R780) | 0.251 | 0.78*** |
ADF (%) | ADF=42+31.6×(R460)-10.7×(R550)-4.04×(R650)-0.21×(R780) | 1.182 | 0.81*** |
NDF (%) | NDF=40.7+23.8×(R460)-8.7×(R550)+22×(R650)-7.6×(R780) | 1.169 | 0.74*** |
Stepwise regression of the first derivatives of reflectance | |||
N (%) | N=1.83-1372.5×(R440)-125×(R530)-2136×(R630)+271×(R760) | 0.151 | 0.87*** |
P (%) | P=0.15-3279×(R440)-100.6×(R530)-2080×(R630)+143×(R760) | 0.069 | 0.91*** |
K (%) | K=1.02-4097×(R440)+68.4×(R530)-1366×(R630)+326×(R760) | 0.219 | 0.83*** |
ADF (%) | ADF=40+42531×(R440)+1517×(R530)-229119×(R630)-1932×(R760) | 0.703 | 0.93*** |
NDF (%) | NDF=51+26981×(R440)-341×(R530)-22446×(R630)-2020×(R760) | 0.859 | 0.86*** |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Albayrak, S. Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture. Sensors 2008, 8, 7275-7286. https://doi.org/10.3390/s8117275
Albayrak S. Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture. Sensors. 2008; 8(11):7275-7286. https://doi.org/10.3390/s8117275
Chicago/Turabian StyleAlbayrak, Sebahattin. 2008. "Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture" Sensors 8, no. 11: 7275-7286. https://doi.org/10.3390/s8117275
APA StyleAlbayrak, S. (2008). Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture. Sensors, 8(11), 7275-7286. https://doi.org/10.3390/s8117275