You are currently viewing a new version of our website. To view the old version click .
Sensors
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

25 December 2025

A TCN-BiLSTM and ANR-IEKF Hybrid Framework for Sustained Vehicle Positioning During GNSS Outages

,
,
,
,
and
1
National Key Laboratory of Dynamic Testing Technology for Extreme Environment Optoelectronics, North University of China, Taiyuan 030051, China
2
School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
*
Author to whom correspondence should be addressed.
This article belongs to the Section Navigation and Positioning

Abstract

The performance of integrated Global Navigation Satellite System and Inertial Navigation System (GNSS/INS) navigation often declines in complex urban environments due to frequent GNSS signal blockages. This poses a significant challenge for autonomous driving applications that require continuous and reliable positioning. To address this limitation, this paper presents a novel hybrid framework that combines a deep learning architecture with an adaptive Kalman Filter. At the core of this framework is a Temporal Convolutional Network and Bidirectional Long Short-Term Memory (TCN-BiLSTM) model, which generates accurate pseudo-GNSS measurements from raw INS data during GNSS outages. These measurements are then fused with the INS data stream using an Adaptive Noise-Regulated Iterated Extended Kalman Filter (ANR-IEKF), which enhances robustness by dynamically estimating and adjusting the process and observation noise statistics in real time. The proposed ANR-IEKF + TCN-BiLSTM framework was validated using a real-world vehicle dataset that encompasses both straight-line and turning scenarios. The results demonstrate its superior performance in positioning accuracy and robustness compared to several baseline models, thereby confirming its effectiveness as a reliable solution for maintaining high-precision navigation in GNSS-denied environments. Validated in 70 s GNSS outage environments, our approach enhances positioning accuracy by over 50% against strong deep learning baselines with errors reduced to roughly 3.4 m.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.