Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses
Abstract
:1. Introduction
2. Design of Microsecond High-Amplitude Magnetic Field Meter
2.1. Design of the Magnetic Field Probe Using CMR-B-Scalar Sensor
2.2. Design of the First Version of the Magnetic Field Meter
2.3. Design of the Second Version of the Magnetic Field Meter
3. Results and Discussion
3.1. Bipolar Pulsed Voltage Behavior in Different Magnetic Field Meters
3.2. Testing of the Magnetic Field Meters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battesti, R.; Beard, J.; Böser, S.; Bruyant, N.; Budker, D.; Crooker, S.A.; Daw, E.J.; Flambaum, V.V.; Inada, T.; Irastorza, I.G.; et al. High magnetic fields for fundamental Physics. Phys. Rep. 2018, 765–766, 1–39. [Google Scholar] [CrossRef]
- Abate, D.; Cavazzana, R. Effective area measurements of magnetic pick-up coil sensors for RFX-mod2. Sensors 2022, 22, 9767. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, D.; Sawabe, H.; Matsuda, Y.H.; Takeyama, S. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique. Rev. Sci. Instrum. 2013, 84, 044702. [Google Scholar] [CrossRef]
- Tumanski, S. Induction coil sensors—A review. Meas. Sci. Technol. 2007, 18, R31. [Google Scholar] [CrossRef]
- Bellmann, J.; Lueg-Altho, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A.E. Measurement and analysis technologies for magnetic pulse welding: Established methods and new strategies. Adv. Manuf. 2016, 4, 322–339. [Google Scholar] [CrossRef]
- Karsenty, A. A comprehensive review of integrated Hall effects in macro-, micro-, nanoscales, and quantum devices. Sensors 2020, 20, 4163. [Google Scholar] [CrossRef] [PubMed]
- Look, D.C. Review of Hall effect and magnetoresistance measurements in GaAs materials and devices. J. Electrochem. Soc. 1990, 137, 260–266. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 02200. [Google Scholar] [CrossRef]
- Song, S.; Cheng, C. Measurement of solid Armature’s in-bore velocity using B-dot probes in a series-augmented railguns. IEEE Trans. Plasma Sci. 2015, 43, 1310–1315. [Google Scholar] [CrossRef]
- Cao, R.; Xu, X. Analysis of the velocity and current measurement method based on B-dot probes for the rail gun. IEEE Trans. Plasma Sci. 2017, 45, 981–989. [Google Scholar] [CrossRef]
- Jogschies, L.; Klaas, D.; Kruppe, R.; Rittinger, J.; Taptimthong, P.; Wienecke, A.; Rissing, L.; Wurz, M.C. Recent developments of magnetoresistive sensors for industrial applications. Sensors 2015, 15, 28665–28689. [Google Scholar] [CrossRef]
- Lenz, J.; Edelstein, A.S. Magnetic sensors and their applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Mironov, O.A.; Zherlitsyn, S.; Uhlarz, M.; Skourski, Y.; Palewski, T.; Wosnitza, J. Microminiature Hall probes for applications at pulsed magnetic fields up to 87 Tesla. J. Low Temp. Phys. 2010, 159, 315–318. [Google Scholar] [CrossRef]
- Wei, S.; Liao, X.; Zhang, H.; Pang, J.; Zhou, Y. Recent progress of fluxgate magnetic sensors: Basic research and application. Sensors 2021, 21, 1500. [Google Scholar] [CrossRef]
- Tang, W.; Lyu, F.; Wang, D.; Pan, H. A new design of a single–device 3d Hall sensor: Cross–shaped 3D Hall sensor. Sensors 2018, 18, 1065. [Google Scholar] [CrossRef]
- Shiogai, J.; Fujiwara, K.; Nojima, T.; Tsukazaki, A. Three-dimensional sensing of the magnetic-field vector by a compact planar-type Hall device. Commun. Mater. 2021, 2, 102. [Google Scholar] [CrossRef]
- Alfadhel, A.; Carreno, A.A.A.; Foulds, I.G.; Kosel, J. Three-axis magnetic field induction sensor realized on buckled cantilever plate. IEEE Trans. Magn. 2013, 49, 4144–4147. [Google Scholar] [CrossRef]
- Dagotto, E.; Hotta, T.; Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 2001, 344, 1–153. [Google Scholar] [CrossRef]
- Balevicius, S.; Zurauskiene, Z.; Stankevic, V.; Stankevic, T.; Novickij, J.; Schneider, M. High-frequency CMR–B–Scalar sensor for pulsed magnetic field measurement. IEEE Trans. Plasma Sci. 2013, 41, 2885–2889. [Google Scholar] [CrossRef]
- Stankevič, T.; Medišauskas, L.; Stankevič, V.; Balevičius, S.; Žurauskiene, N.; Liebfried, O.; Schneider, M. Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation. Rev. Sci. Instrum. 2014, 85, 044704. [Google Scholar] [CrossRef]
- Balevicius, S.; Zurauskiene, N.; Stankevic, V.; Kersulis, S.; Plausinaitiene, V.; Abrutis, A.; Zherlitsyn, S.; Herrmannsdorfer, T.; Wosnitza, J.; Wolff-Fabris, F. Nanostructured thin manganite films in megagauss magnetic field. Appl. Phys. Lett. 2012, 101, 092407. [Google Scholar] [CrossRef]
- Haran, T.L.; Hoffman, R.B.; Lane, S.E. Diagnostic Capabilities for Electromagnetic Railguns. IEEE Trans. Plasma Sci. 2013, 41, 1526–1532. [Google Scholar] [CrossRef]
- Stankevic, V.; Lueg-Althoff, J.; Hahn, M.; Tekkaya, A.E.; Zurauskiene, N.; Dilys, J.; Klimantavicius, J.; Skirmantas, K.; Simkevicius, C.; Balevicius, S. Magnetic field measurements during magnetic pulse welding using CMR-B-Scalar sensors. Sensors 2020, 20, 5925. [Google Scholar] [CrossRef]
- Johnson, H.; Graham, M. High-Speed Digital Design: A Handbook of Black Magic; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1993; p. 140. [Google Scholar]
- Imamura, H.; Uchida, K.; Ohmichi, E.; Osada, T. Magnetotransport measurements of low dimensional conductors under pulsed ultra-high magnetic fields. J. Phys. Conf. Ser. 2006, 51, 303–306. [Google Scholar] [CrossRef]
- Stankevič, V.; Keršulis, S.; Dilys, J.; Bleizgys, V.; Viliūnas, M.; Vertelis, V.; Maneikis, A.; Rudokas, V.; Plaušinaitienė, V.; Žurauskienė, N. Measurement system for short-pulsed magnetic fields. Sensors 2023, 23, 1435. [Google Scholar] [CrossRef]
- Ziese, M. Extrinsic Magnetotransport Phenomena in Ferromagnetic Oxides. Rep. Prog. Phys. 2002, 65, 143–249. [Google Scholar] [CrossRef]
- Pękała, M.; Pękała, K.; Drozd, V. Magnetotransport Study of Nanocrystalline and Polycrystalline Manganites La0.8Sr0.2MnO3 in High Magnetic Fields. J. Appl. Phys. 2015, 117, 175902. [Google Scholar] [CrossRef]
- Marozau, I.; Das, P.T.; Döbeli, M.; Storey, J.G.; Uribe-Laverde, M.A.; Das, S.; Wang, C.; Rössle, M.; Bernhard, C. Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO3 thin films grown by pulsed laser deposition. Phys. Rev. B Condens. Matter 2014, 89, 174422. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Stankevic, V.; Kersulis, S.; Vagner, M.; Plausinaitiene, V.; Dobilas, J.; Vasiliauskas, R.; Skapas, M.; Koliada, M.; Pietosa, J.; et al. Enhancement of room-temperature low-field magnetoresistance in nanostructured lanthanum manganite films for magnetic sensor applications. Sensors 2022, 22, 4004. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Balevicius, S.; Stankevic, V.; Kersulis, S.; Klimantavicius, J.; Plausinaitiene, V.; Kubilius, V.; Skapas, M.; Juskenas, R.; Navickas, R. Magnetoresistive properties of thin nanostructured manganite films grown by metalorganic chemical vapour deposition onto glass-ceramics substrates. J. Mater. Sci. 2018, 53, 12996–13009. [Google Scholar] [CrossRef]
- Grainys, A.; Novickij, J.; Stankevič, T.; Stankevič, V.; Novickij, V.; Žurauskienė, N. Single Pulse Calibration of Magnetic Field Sensors Using Mobile 43 kJ Facility. Meas. Sci. Rev. 2015, 15, 244–247. [Google Scholar] [CrossRef]
- Tavares, P.B.; Amaral, V.S.; Araujo, J.P.; Sousa, J.B.; Lourenço, A.A.C.S.; Vieira, J.M. Substrate, annealing, and Mn excess effects on La-Ca-MnO3 thin films grown by metalorganic chemical vapor deposition: A way to room-temperature Tc. J. Appl. Phys. 1999, 85, 5411–5413. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatrou, P.; Stankevic, V.; Zurauskiene, N.; Kersulis, S.; Viliunas, M.; Baskys, A.; Sapurov, M.; Bleizgys, V.; Antonovic, D.; Plausinaitiene, V.; et al. Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses. Sensors 2025, 25, 1640. https://doi.org/10.3390/s25061640
Piatrou P, Stankevic V, Zurauskiene N, Kersulis S, Viliunas M, Baskys A, Sapurov M, Bleizgys V, Antonovic D, Plausinaitiene V, et al. Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses. Sensors. 2025; 25(6):1640. https://doi.org/10.3390/s25061640
Chicago/Turabian StylePiatrou, Pavel, Voitech Stankevic, Nerija Zurauskiene, Skirmantas Kersulis, Mindaugas Viliunas, Algirdas Baskys, Martynas Sapurov, Vytautas Bleizgys, Darius Antonovic, Valentina Plausinaitiene, and et al. 2025. "Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses" Sensors 25, no. 6: 1640. https://doi.org/10.3390/s25061640
APA StylePiatrou, P., Stankevic, V., Zurauskiene, N., Kersulis, S., Viliunas, M., Baskys, A., Sapurov, M., Bleizgys, V., Antonovic, D., Plausinaitiene, V., Skapas, M., Vertelis, V., & Levitas, B. (2025). Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses. Sensors, 25(6), 1640. https://doi.org/10.3390/s25061640