Wearable Sensor Technologies and Gait Analysis for Early Detection of Dementia: Trends and Future Directions
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Bibliometric Analysis
2.4.1. Performance Analysis
2.4.2. Science Mapping Analysis
- Co-authorship Analysis: This analysis focused on institutional affiliations, treating organizations as the unit of analysis. Institutions with at least two published documents were included. The resulting network visualized collaboration patterns between institutions, with node sizes reflecting the number of documents associated with each organization.
- Bibliographic Coupling: Journals were used as the unit of analysis to assess thematic similarity based on shared references. A minimum of two documents per source was required for inclusion. The resulting overlay visualization identified clusters of journals with overlapping citation profiles.
- Co-citation Analysis: This technique was used to identify the intellectual structure and key scholarly influences within the field. It focuses on detecting sources (i.e., journals) that are frequently cited together across different publications, which may indicate shared conceptual backgrounds or thematic alignment. Τhe unit of analysis was the source (journal), and a minimum threshold of 10 co-citations was applied to ensure relevance and statistical robustness. This mapping approach enables the identification of influential publications and intellectual schools of thought [8,16].
- Keyword Co-occurrence Analysis: Author keywords served as the unit of analysis to explore recurring themes and emerging trends. Keywords that appeared at least three times across the corpus were included. Co-occurrence patterns were visualized as a network, with node size weighted by keyword frequency. Clustering was automatically performed by VOSviewer based on link strength and proximity, revealing major thematic groupings in the field.
3. Results
3.1. Included Studies
3.2. Bibliometric Performance Analysis
3.3. Science Mapping
3.3.1. Co-Authorship Analysis by Country
3.3.2. Bibliographic Coupling Analysis of Organizations
3.3.3. Co-Citation Analysis
3.3.4. Co-Occurrence Analysis of Author Keywords
- Cluster 1. Cognitive and Clinical Aspects of Dementia (9 items): Alzheimer’s disease, Balance, Cognition, Cognitive function, Cognitive impairment, Dementia, Elderly, Gait, Wearable [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64].
- Cluster 4. Aging, Cognitive Decline, and Emerging Technologies (6 items): Aging, Cognitive decline, Exercise, Machine learning, Mild cognitive impairment, Technology [112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146]
4. Discussion
4.1. Interpretation of Thematic Cluster 1
4.2. Interpretation of Thematic Cluster 2
4.3. Interpretation of Thematic Cluster 3
4.4. Interpretation of Thematic Cluster 4
4.5. Causal Relationships and Neural Mechanisms Linking AD Pathology to Gait Abnormalities
4.6. Diagnostic Thresholds and Quantitative Gait Indicators for Early Cognitive Decline
4.7. Emerging Trends
4.8. Interdisciplinary Nature of the Field
4.9. Gaps in the Literature and Practical Implications for Clinical and Technological Research
4.10. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health, T.L.P. Reinvigorating the public health response to dementia. Lancet Public Health 2021, 6, e696. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol. 2016, 15, 455–532. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Comas-Herrera, A.; Knapp, M.; Guerchet, M.; Karagiannidou, M. World Alzheimer Report 2016. Improving Healthcare for People Living with Dementia: Coverage, Quality and Costs Now and in the Future; Alzheimer’s Disease International: London, UK, 2016. [Google Scholar]
- Aliberti, M.J.R.; Avelino-Silva, T.J.; Suemoto, C.K. Maximizing early dementia detection through medicare annual wellness visits. JAMA Netw. Open 2024, 7, e2437162. [Google Scholar] [CrossRef]
- Rasmussen, J.; Langerman, H. Alzheimer’s disease—Why we need early diagnosis. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 123–130. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Bakirtzis, C.; Plakias, S.; Vlotinou, P.; Vadikolias, K.; Terzoudi, A.; Christidi, F. Predictive models for the transition from mild neurocognitive disorder to major neurocognitive disorder: Insights from clinical, demographic, and neuropsychological data. Biomedicines 2024, 12, 1232. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Plakias, S.; Kokkotis, C.; Vlotinou, P.; Kyriazidou, S.; Giarmatzis, G.; Kallivoulos, S.; Terzoudi, A.; Tsiptsios, D.; Merai, S. Instrumental Activities of Daily Living in Neurocognitive Disorders: Determinants and Clinical Implications for Health Promotion. Brain Sci. 2025, 15, 417. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Vadikolias, K.; Tripsianis, G.; Vlotinou, P.; Serdari, A.; Terzoudi, A.; Heliopoulos, I. Influence of social and demographic factors on the Montreal Cognitive Assessment (MoCA) Test in rural population of north-eastern Greece. Geriatrics 2021, 6, 43. [Google Scholar] [CrossRef]
- Vinze, S.; Chodosh, J.; Lee, M.; Wright, J.; Borson, S. The national public health response to Alzheimer’s disease and related dementias: Origins, evolution, and recommendations to improve early detection. Alzheimer’s Dement. 2023, 19, 4276–4286. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Plakias, S.; Karakitsiou, G.; Nikova, A.; Christidi, F.; Kokkotis, C.; Giarmatzis, G.; Tsakni, G.; Katsouri, I.-G.; Dimitrios, S. Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective. Biomechanics 2024, 4, 664–684. [Google Scholar] [CrossRef]
- Seifallahi, M.; Galvin, J.E.; Ghoraani, B. Detection of mild cognitive impairment using various types of gait tests and machine learning. Front. Neurol. 2024, 15, 1354092. [Google Scholar] [CrossRef] [PubMed]
- Tsiakiri, A.; Plakias, S.; Giarmatzis, G.; Tsakni, G.; Christidi, F.; Papadopoulou, M.; Bakalidou, D.; Vadikolias, K.; Aggelousis, N.; Vlotinou, P. Gait Analysis in Multiple Sclerosis: A Scoping Review of Advanced Technologies for Adaptive Rehabilitation and Health Promotion. Biomechanics 2025, 5, 65. [Google Scholar] [CrossRef]
- Xie, H.; Wang, Y.; Tao, S.; Huang, S.; Zhang, C.; Lv, Z. Wearable sensor-based daily life walking assessment of gait for distinguishing individuals with amnestic mild cognitive impairment. Front. Aging Neurosci. 2019, 11, 285. [Google Scholar] [CrossRef]
- Zhong, Y.; Huang, S.; Zou, M.; Chen, Y.; Shen, P.; He, Y.; Li, Y.; Liu, C.; Chen, Z. Gait analysis in older adults with mild cognitive impairment: A bibliometric analysis of global trends, hotspots, and emerging frontiers. Front. Aging 2025, 6, 1592464. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Ellegaard, O. The application of bibliometric analysis: Disciplinary and user aspects. Scientometrics 2018, 116, 181–202. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- Xiong, C.; Lu, R.; Bui, Q.; Popp, B.; Schindler, S.E.; Shriver, L.P.; Cruchaga, C.; Hassenstab, J.; Benzinger, T.L.S.; Agboola, F.; et al. Person-specific digital measurements of air pollutant exposure and biomarkers of Alzheimer’s disease: Findings from a pilot study. J. Alzheimer’s Dis. 2025, 107, 778–788. [Google Scholar] [CrossRef]
- Schiavo, A.; Tiecker, A.P.; Dos Santos Oliveira, M.; Ross, N.R.; de Oliveira Brauner, F.; Balbinot, G.; Gemerasca Mestriner, R.G. Age-stratified validation of the performance index (P-Index) as a metric for dual-task cost in functional mobility across the adult lifespan. Gait Posture 2025, 121, 273–280. [Google Scholar] [CrossRef]
- Labott, B.K.; Herold, F.; Langhans, C.; Halfpaap, N.; Grässler, B.; Hoekelmann, A.; Müller, N.G.; Hamacher, D. Minimum toe clearance variability in older adults with mild cognitive impairment: Differences to healthy controls and effects of a dance intervention. Gait Posture 2025, 121, 101–107. [Google Scholar] [CrossRef]
- Chan, L.L.Y.; Espinoza-Cerda, M.T.; Brodie, M.A.; Lord, S.R.; Taylor, M.E. Daily-life walking speed, running duration and bedtime from wrist-worn sensors predict incident dementia: A watch walk—UK biobank study. Int. Psychogeriatr. 2025, 37, 100031. [Google Scholar] [CrossRef] [PubMed]
- Slusarenko, A.; Rosenberg, M.C.; Kazanski, M.E.; McKay, J.L.; Emmery, L.; Kesar, T.M.; Hackney, M.E. Associations between music and dance relationships, rhythmic proficiency, and spatiotemporal movement modulation ability in adults with and without mild cognitive impairment. J. Alzheimer’s Dis. 2025, 105, 1165–1182. [Google Scholar] [CrossRef] [PubMed]
- Hammink, J.H.W.; van Buuren, L.P.G.; Moor, J.A.; Derks, D.A.J.A.; Mohammadi, M. Evolving dementia care: An explorative study on the lived experience of older adults living with dementia in nursing homes using observational and biometric sensor data. Dementia 2025, 24, 456–479. [Google Scholar] [CrossRef] [PubMed]
- Elasfar, S.; Hameed, H.; Boeve, B.F.; Fields, J.A.; Jack, C.R.; Kantarci, K.; St Louis, E.K.; Lowe, V.J.; Petersen, R.C.; Ali, F.; et al. Identifying gait differences between Alzheimer’s disease and dementia with Lewy bodies and their associations with regional amyloid deposition. Alzheimer’s Dement. 2025, 21, e14351. [Google Scholar] [CrossRef]
- Resnick, B.; Boltz, M.; Galik, E.; Kuzmik, A.; McPherson, R.; Drazich, B.; Kim, N.; Zhu, S.; Wells, C.L. Measurement of Physical Activity Among Hospitalized Older Adults Living With Dementia. Rehabil. Nurs. 2024, 49, 115–124. [Google Scholar] [CrossRef]
- Schmidt, L.; Zieschang, T.; Koschate, J.; Stuckenschneider, T. Impaired Standing Balance in Older Adults with Cognitive Impairment after a Severe Fall. Gerontology 2024, 70, 755–763. [Google Scholar] [CrossRef]
- Jehu, D.A.; Langston, R.; Sams, R.; Young, L.; Hamrick, M.; Zhu, H.; Dong, Y. The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study. Sensors 2024, 24, 2691. [Google Scholar] [CrossRef]
- Greene, B.; Tobyne, S.; Jannati, A.; McManus, K.; Osman, J.G.; Banks, R.; Kher, R.; Showalter, J.; Bates, D.; Pascual- Leone, A. The Dual Task Ball Balancing Test and Its Association with Cognitive Function: Algorithm Development and Validation. J. Med. Internet Res. 2024, 26, e49794. [Google Scholar] [CrossRef]
- Chiba, Y.; Kumamoto, A.; Noguchi, N.; Yoshimi, A.; Suda, A.; Hishimoto, A.; Kase, A. Wheelchair dependence in patients with dementia: Focus on kinematic gait analysis using simple wearable accelerometers and gyroscopes. Assist. Technol. 2024, 36, 398–404. [Google Scholar] [CrossRef]
- Aznielle-Rodríguez, T.; Galán-García, L.; Ontivero-Ortega, M.; Aguilar-Mateu, K.; Castro-Laguardia, A.M.; Fernández-Nin, A.; Garcia-Agustin, D.; Valdés-Sosa, M. Relationship between gait parameters and cognitive indexes in adult aging. PLoS ONE 2023, 18, e0291963. [Google Scholar] [CrossRef] [PubMed]
- Kostic, E.; Kwak, K.; Kim, D. Assessing the Global Cognition of Community-Dwelling Older Adults Using Motor and Sensory Factors: A Cross-Sectional Feasibility Study. Sensors 2023, 23, 7384. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, K.; Javed, B.; Toosizadeh, N. Association between dual-task function and neuropsychological testing in older adults with cognitive impairment. Exp. Gerontol. 2023, 178, 112223. [Google Scholar] [CrossRef] [PubMed]
- Trumpf, R.; Häussermann, P.; Zijlstra, W.; Fleiner, T. Circadian aspects of mobility-related behavior in patients with dementia: An exploratory analysis in acute geriatric psychiatry. Int. J. Geriatr. Psychiatry 2023, 38, e5957. [Google Scholar] [CrossRef]
- Wang, C.; Zahiri, M.; Vaziri, A.; Najafi, B. Dual-Task Upper Extremity Motor Performance Measured by Video Processing as Cognitive-Motor Markers for Older Adults. Gerontology 2023, 69, 650–656. [Google Scholar] [CrossRef]
- Choi, J.Y.; Ha, S.W.; Jeong, D.E.; Lee, J.; Kim, D.; Min, J.Y.; Min, K.B. Association Between the Loss of Gait Harmony and Cognitive Impairment: Cross-Sectional Study. JMIR Public Health Surveill. 2023, 9, e46264. [Google Scholar] [CrossRef]
- Poole, V.N.; Dawe, R.J.; Lamar, M.; Esterman, M.; Barnes, L.; Leurgans, S.E.; Bennett, D.A.; Hausdorff, J.M.; Buchman, A.S. Dividing attention during the Timed Up and Go enhances associations of several subtask performances with MCI and cognition. PLoS ONE 2022, 17, e0269398. [Google Scholar] [CrossRef]
- Ma, R.; Zhào, H.; Wei, W.; Liu, Y.; Huang, Y. Gait characteristics under single-/dual-task walking conditions in elderly patients with cerebral small vessel disease: Analysis of gait variability, gait asymmetry and bilateral coordination of gait. Gait Posture 2022, 92, 65–70. [Google Scholar] [CrossRef]
- Zhou, H.; Park, C.; Shahbazi, M.; York, M.K.; Kunik, M.E.; Naik, A.D.; Najafi, B. Digital Biomarkers of Cognitive Frailty: The Value of Detailed Gait Assessment beyond Gait Speed. Gerontology 2022, 68, 224–233. [Google Scholar] [CrossRef]
- Taraldsen, K.; Helbostad, J.L.; Follestad, T.; Bergh, S.; Selbæk, G.; Saltvedt, I. Gait, physical function, and physical activity in three groups of home-dwelling older adults with different severity of cognitive impairment—A cross-sectional study. BMC Geriatr. 2021, 21, 670. [Google Scholar] [CrossRef]
- Wouters, H.; van Campen, J.P.; Kuitert, M.J.; Kikkert, L.; Hilmer, S.N.; Taxis, K.; Van Der Meer, H.G.; Lamoth, C.J.C. Anticholinergic and Sedative Medications and Dynamic Gait Parameters in Older Patients. Drugs Aging 2021, 38, 1087–1096. [Google Scholar] [CrossRef]
- Hao, W.; Zhao, W.; Kimura, T.; Ukawa, S.; Kadoya, K.; Kondo, K.; Tamakoshi, A. Association of gait with global cognitive function and cognitive domains detected by MoCA-J among community-dwelling older adults: A cross-sectional study. BMC Geriatr. 2021, 21, 523. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Studenski, S.A.; An, Y.; Kuo, P.L.; Schrack, J.A.; Wanigatunga, A.A.; Simonsick, E.M.; Resnick, S.M.; Ferrucci, L. Association of Combined Slow Gait and Low Activity Fragmentation with Later Onset of Cognitive Impairment. JAMA Netw. Open 2021, 4, e2135168. [Google Scholar] [CrossRef] [PubMed]
- Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Pau, M. Clinical assessment of gait and functional mobility in Italian healthy and cognitively impaired older persons using wearable inertial sensors. Aging Clin. Exp. Res. 2021, 33, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Mc Ardle, R.; Del Din, S.; Donaghy, P.; Galna, B.; Thomas, A.J.; Rochester, L. The impact of environment on gait assessment: Considerations from real-world gait analysis in dementia subtypes. Sensors 2021, 21, 813. [Google Scholar] [CrossRef]
- Gabriel, A.; Lehner, C.T.; Höhler, C.; Schneider, T.; Pfeiffer, T.P.T.; Diehl-Schmid, J.; Hermsdörfer, J. Anticipatory and reactive grip force control in patients with alzheimer’s disease: A pilot study. J. Alzheimer’s Dis. 2021, 82, 1651–1665. [Google Scholar] [CrossRef]
- Trumpf, R.; Morat, T.; Zijlstra, W.; Häussermann, P.; Fleiner, T. Assessment of Functional Performance in Acute Geriatric Psychiatry—Time for New Strategies? J. Geriatr. Psychiatry Neurol. 2020, 33, 316–323. [Google Scholar] [CrossRef]
- Rantalainen, T.; Teo, W.P.; Ridgers, N.D.; Nuzum, N.D.; Valente, L.; MacPherson, H. Laboratory-Based Gait Variability and Habitual Gait Entropy Do Not Differentiate Community-Dwelling Older Adults from Those with Subjective Memory Complaints. Gait Posture 2020, 80, 20–25. [Google Scholar] [CrossRef]
- Pau, M.; Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Leban, B.; Allali, G. Smoothness of gait in healthy and cognitively impaired individuals: A study on Italian elderly using wearable inertial sensor. Sensors 2020, 20, 3577. [Google Scholar] [CrossRef]
- Muurling, M.; Rhodius- Meester, H.F.M.; Pärkkä, J.; van Gils, M.; Frederiksen, K.S.; Bruun, M.; Hasselbalch, S.G.; Soininen, H.; Herukka, S.K.; Hallikainen, M.; et al. Gait Disturbances are Associated with Increased Cognitive Impairment and Cerebrospinal Fluid Tau Levels in a Memory Clinic Cohort. J. Alzheimer’s Dis. 2020, 76, 1061–1070. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Nakaya, T.; McCormack, G.R.; Shibata, A.; Ishii, K.; Yasunaga, A.; Koichiro, K. Cognitive Function of Elderly Persons in Japanese Neighborhoods: The Role of Street Layout. Am. J. Alzheimer’s Dis. Other Dement. 2019, 34, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.E.; Brodie, M.A.; Van Schooten, K.S.; Delbaere, K.; Close, J.C.T.; Payne, N.; Webster, L.; Chow, J.; McInerney, G.; Kurrle, S.E.; et al. Older People with Dementia Have Reduced Daily-Life Activity and Impaired Daily-Life Gait When Compared to Age-Sex Matched Controls. J. Alzheimer’s Dis. 2019, 71, S125–S135. [Google Scholar] [CrossRef] [PubMed]
- Van Deun, B.; Hobbelen, J.S.M.; Cagnie, B.; van Eetvelde, B.; van den Noortgate, N.; Cambier, D. Reproducible Measurements of Muscle Characteristics Using the MyotonPRO Device: Comparison between Individuals With and Without Paratonia. J. Geriatr. Phys. Ther. 2018, 41, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, L.; Vuillerme, N.; van Campen, J.P.; Appels, B.A.; Hortobágyi, T.; Lamoth, C.J.C. The relationship between gait dynamics and future cognitive decline: A prospective pilot study in geriatric patients. Int. Psychogeriatr. 2018, 30, 1301–1309. [Google Scholar] [CrossRef]
- Byun, S.; Han, J.W.; Kim, T.H.; Kim, K.; Kim, T.H.; Park, J.Y.; Suh, S.W.; Seo, J.Y.; So, Y.; Lee, K.H.; et al. Gait Variability Can Predict the Risk of Cognitive Decline in Cognitively Normal Older People. Dement. Geriatr. Cogn. Disord. 2018, 45, 251–261. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Hillel, I.; Shustak, S.; Del Din, S.; Bekkers, E.M.J.; Pelosin, E.; Nieuwhof, F.; Rochester, L.; Mirelman, A. Everyday stepping quantity and quality among older adult fallers with and without mild cognitive impairment: Initial evidence for new motor markers of cognitive defcits? J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 1078–1082. [Google Scholar] [CrossRef]
- Zhou, H.; Lee, H.; Lee, J.; Schwenk, M.; Najafi, B. Motor planning error: Toward measuring cognitive frailty in older adults using wearables. Sensors 2018, 18, 926. [Google Scholar] [CrossRef]
- König, A.; Klaming, L.; Pijl, M.; Demeurraux, A.; David, R.; Robert, P. Objective measurement of gait parameters in healthy and cognitively impaired elderly using the dual-task paradigm. Aging Clin. Exp. Res. 2017, 29, 1181–1189. [Google Scholar] [CrossRef]
- Zhou, H.; Sabbagh, M.; Wyman, R.; Liebsack, C.; Kunik, M.E.; Najafi, B. Instrumented Trail-Making Task to Differentiate Persons with No Cognitive Impairment, Amnestic Mild Cognitive Impairment, and Alzheimer Disease: A Proof of Concept Study. Gerontology 2017, 63, 189–200. [Google Scholar] [CrossRef]
- Werner, C.; Wiloth, S.; Lemke, N.C.; Kronbach, F.; Jansen, C.P.; Oster, P.; Bauer, J.M.; Hauer, K. People with dementia can learn compensatory movement maneuvers for the sit-to-stand task: A randomized controlled trial. J. Alzheimer’s Dis. 2017, 60, 107–120. [Google Scholar] [CrossRef]
- Gillain, S.; Dramé, M.; Lekeu, F.; Wojtasik, V.; Ricour, C.; Croisier, J.L.; Salmon, E.; Pétermans, J. Gait speed or gait variability, which one to use as a marker of risk to develop Alzheimer disease? A pilot study. Aging Clin. Exp. Res. 2016, 28, 249–255. [Google Scholar] [CrossRef]
- Ijmker, T.; Lamoth, C.J.C. Gait and cognition: The relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture 2012, 35, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Liu, Z.; Hu, Z.; Yang, T.; Gong, C. Research progress and visual analysis of smart wearable devices for the elderly in the context of ageing 4.0. Technol. Health Care 2025, 33, 895–914. [Google Scholar] [CrossRef] [PubMed]
- Ustad, A.; Edwin, T.H.; Melsæter, K.N.; Sverdrup, K.; Tangen, G.G.; Døhl, Ø.; Thingstad, P.; Vereijken, B.; Maroni, N. Daily physical activity and trajectories of care service use among older adults: The HUNT4 Trondheim 70+ study. Front. Public Health 2025, 13, 1539179. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Brown, S.; Paquette, D.R.; Orwig, T.A.; Spartano, N.L.; Lin, H. Passive Measures of Physical Activity and Cadence as Early Indicators of Cognitive Impairment: Observational Study. J. Med. Internet Res. 2025, 27, e72946. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Ji, M.; Li, X. Wearable Technologies for Health Promotion and Disease Prevention in Older Adults: Systematic Scoping Review and Evidence Map. J. Med. Internet Res. 2025, 27, e69077. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Hu, Y.; Zhang, J.; Wang, X.; Wang, F.; Wu, M.; Lin, T. Predicting physical functioning status in older adults: Insights from wrist accelerometer sensors and derived digital biomarkers of physical activity. J. Am. Med. Inform. Assoc. 2024, 31, 2571–2582. [Google Scholar] [CrossRef]
- Qiao, Y.S.; Blackwell, T.L.; Cawthon, P.M.; Coen, P.M.; Cummings, S.R.; Distefano, G.; Farsijani, S.; Forman, D.E.; Goodpaster, B.H.; Kritchevsky, S.B.; et al. Associations of accelerometry-measured and self-reported physical activity and sedentary behavior with skeletal muscle energetics: The Study of Muscle, Mobility and Aging (SOMMA). J. Sport Health Sci. 2024, 13, 621–630. [Google Scholar] [CrossRef]
- Muurling, M.; Badissi, M.; de Boer, C.; Legdeur, N.; Barkhof, F.; van Berckel, B.N.M.; Maier, A.B.; Pijnappels, M.; Visser, P.J. Physical activity levels in cognitively normal and cognitively impaired oldest-old and the association with dementia risk factors: A pilot study. BMC Geriatr. 2023, 23, 129. [Google Scholar] [CrossRef]
- Chan, L.L.Y.; Brodie, M.A.; Lord, S.R. Prediction of Incident Depression in Middle-Aged and Older Adults using Digital Gait Biomarkers Extracted from Large-Scale Wrist Sensor Data. J. Am. Med. Dir. Assoc. 2023, 24, 1106–1113.e11. [Google Scholar] [CrossRef]
- Chan, L.L.Y.; Arbona, C.H.; Brodie, M.A.; Lord, S.R. Prediction of injurious falls in older adults using digital gait biomarkers extracted from large-scale wrist sensor data. Age Ageing 2023, 52, afad179. [Google Scholar] [CrossRef] [PubMed]
- Volders, E.; de Groot, R.H.M.; Bolman, C.A.W.; Lechner, L. The longitudinal associations between change in physical activity and cognitive functioning in older adults with chronic illness (es). BMC Geriatr. 2021, 21, 478. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.S.; Dawe, R.J.; Leurgans, S.E.; Curran, T.A.; Truty, T.; Yu, L.; Barnes, L.; Hausdorff, J.M.; Bennett, D.A. Different combinations of mobility metrics derived from a wearable sensor are associated with distinct health outcomes in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.; Chow, M.; Batchelor, F.; Fary, R.E. Physical activity and sedentary behaviour in a residential aged care facility. Australas. J. Ageing 2019, 38, E12–E18. [Google Scholar] [CrossRef]
- Lu, Z.; Harris, T.B.; Shiroma, E.J.; Leung, J.; Kwok, T. Patterns of Physical Activity and Sedentary Behavior for Older Adults with Alzheimer’s Disease, Mild Cognitive Impairment, and Cognitively Normal in Hong Kong. J. Alzheimer’s Dis. 2018, 66, 1453–1462. [Google Scholar] [CrossRef]
- Moyle, W.; Jones, C.; Murfield, J.; Draper, B.; Beattie, E.; Shum, D.; Thalib, L.; O’Dwyer, S.; Mervin, C.M. Levels of physical activity and sleep patterns among older people with dementia living in long-term care facilities: A 24-h snapshot. Maturitas 2017, 102, 62–68. [Google Scholar] [CrossRef]
- Schwenk, M.; Hauer, K.; Zieschang, T.; Englert, S.; Mohler, J.; Najafi, B. Sensor-derived physical activity parameters can predict future falls in people with dementia. Gerontology 2014, 60, 483–492. [Google Scholar] [CrossRef]
- Yang, D.Z.; Rodrigues, E.E.; Hernandez, H.H.C.; Ong, E.H.; Heyzer, L.; Tan, C.N.; Kua, J.; Ismail, N.H.; Lim, W.S. Validation of the revised multi-sensor-based electronic Short Physical Performance Battery (eSPPB) kiosk in community-dwelling older adults. Eur. Geriatr. Med. 2025, 16, 975–983. [Google Scholar] [CrossRef]
- McCullough, A.K. Use of posterior probabilities from a long short-term memory network for characterizing dance behavior with multiple accelerometers. J. Alzheimer’s Dis. 2025, 105, 1069–1084. [Google Scholar] [CrossRef]
- Mc Ardle, R.; Ryan, L.J.; Ur Rehman, R.Z.U.; Dignan, E.; Thompson, A.; Del Din, S.; Galna, B.; Thomas, A.J.; Rochester, L.; Alcock, L. Validation of an algorithm for detecting turning in people with cognitive impairment, considering dementia disease subtype. Gait Posture 2025, 118, 141–147. [Google Scholar] [CrossRef]
- Beichert, L.; Seemann, J.; Kessler, C.; Traschütz, A.; Müller, D.; Dillmann-Jehn, K.; Ricca, I.; Satolli, S.; Basak, N.A.; Coarelli, G.; et al. Patient-Relevant Digital-Motor Outcomes for Clinical Trials in Hereditary Spastic Paraplegia Type 7: A Multicenter PROSPAX Study. Neurology 2024, 103, e209887. [Google Scholar] [CrossRef] [PubMed]
- Cornish, B.F.; van Ooteghem, K.; Wong, M.; Weber, K.S.; Pieruccini-Faria, F.; Montero-Odasso, M.; McIlroy, W.E. Evaluation of a finite state machine algorithm to measure stepping with ankle accelerometry: Performance across a range of gait speeds, tasks, and individual walking ability. Med. Eng. Phys. 2024, 133, 104251. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Wu, T.; Lure, F.Y.M. E-BDL: Enhanced Band-Dependent Learning Framework for Augmented Radar Sensing. Sensors 2024, 24, 4620. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Aragonés, M.; Pérez-Rodríguez, R.; Carnicero Martínez, J.A.; Moreno-Sánchez, P.A.; Oviedo-Briones, M.; Villalba-Mora, E.; Abizanda-Soler, P.; Rodriguez-Mañas, L. Effects of Monitoring Frailty Through a Mobile/Web-Based Application and a Sensor Kit to Prevent Functional Decline in Frail and Prefrail Older Adults: FACET (Frailty Care and Well Function) Pilot Randomized Controlled Trial. J. Med. Internet Res. 2024, 26, e58312. [Google Scholar] [CrossRef]
- Seifer, A.K.; Kuderle, A.; Dorschky, E.; Moradi, H.; Hannemann, R.; Eskofier, B.M. Step Length and Gait Speed Estimation Using a Hearing Aid Integrated Accelerometer: A Comparison of Different Algorithms. IEEE J. Biomed. Health Inform. 2024, 28, 6619–6628. [Google Scholar] [CrossRef]
- Ghosal, R.; Varma, V.R.; Volfson, D.; Hillel, I.; Urbanek, J.; Hausdorff, J.M.; Watts, A.; Zipunnikov, V. Distributional data analysis via quantile functions and its application to modeling digital biomarkers of gait in Alzheimer’s Disease. Biostatistics 2023, 24, 539–561. [Google Scholar] [CrossRef]
- Haghi, M.; Ershadi, A.; Deserno, T.M. Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking. Sensors 2023, 23, 2066. [Google Scholar] [CrossRef]
- Peimankar, A.; Winther, T.S.; Ebrahimi, A.; Wiil, U.K. A Machine Learning Approach for Walking Classification in Elderly People with Gait Disorders. Sensors 2023, 23, 679. [Google Scholar] [CrossRef]
- Guess, T.M.; Bliss, R.; Hall, J.B.; Kiselica, A. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture. Gait Posture 2022, 96, 130–136. [Google Scholar] [CrossRef]
- Cicirelli, G.; Impedovo, D.; Dentamaro, V.; Marani, R.; Pirlo, G.; D’Orazio, T.R. Human Gait Analysis in Neurodegenerative Diseases: A Review. IEEE J. Biomed. Health Inform. 2022, 26, 229–242. [Google Scholar] [CrossRef]
- Guimarães, V.; Sousa, I.; Correia, M.V. A deep learning approach for foot trajectory estimation in gait analysis using inertial sensors. Sensors 2021, 21, 7517. [Google Scholar] [CrossRef]
- Sprint, G.; Cook, D.J.; Fritz, R. Behavioral differences between subject groups identified using smart homes and change point detection. IEEE J. Biomed. Health Inform. 2021, 25, 559–567. [Google Scholar] [CrossRef]
- Bringas, S.; Salomón, S.; Duque, R.; Lage-Martínez, C.; Montaña Arnáiz, J.L. Alzheimer’s Disease stage identification using deep learning models. J. Biomed. Inform. 2020, 109, 103514. [Google Scholar] [CrossRef]
- Sabo, A.; Mehdizadeh, S.; Ng, K.D.; Iaboni, A.; Taati, B. Assessment of Parkinsonian gait in older adults with dementia via human pose tracking in video data. J. Neuroeng. Rehabil. 2020, 17, 97. [Google Scholar] [CrossRef]
- Razjouyan, J.; Najafi, B.; Horstman, M.; Sharafkhaneh, A.; Amirmazaheri, M.; Zhou, H.; Kunik, M.E.; Naik, A.D. Toward using wearables to remotely monitor cognitive frailty in community-living older adults: An observational study. Sensors 2020, 20, 2218. [Google Scholar] [CrossRef]
- Schaat, S.; Koldrack, P.; Yordanova, K.; Kirste, T.; Teipel, S. Real-Time Detection of Spatial Disorientation in Persons with Mild Cognitive Impairment and Dementia. Gerontology 2020, 66, 85–94. [Google Scholar] [CrossRef]
- Dolatabadi, E.; Zhi, Y.X.; Flint, A.J.; Mansfield, A.; Iaboni, A.; Taati, B. The feasibility of a vision-based sensor for longitudinal monitoring of mobility in older adults with dementia. Arch. Gerontol. Geriatr. 2019, 82, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Fleiner, T.; Giannouli, E.; Jaekel, U.; Mellone, S.; Häussermann, P.; Zijlstra, W. Statistical learning of mobility patterns from long-term monitoring of locomotor behaviour with body-worn sensors. Sci. Rep. 2018, 8, 7079. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, M.; Cereatti, A.; Trojaniello, D.; Avanzino, L.; Pelosin, E.; Del Din, S.; Rochester, L.; Ginis, P.; Bekkers, E.M.J.; Mirelman, A.; et al. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: Multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Biomed. Eng. Online 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Mc Ardle, R.; Morris, R.; Hickey, A.; Del Din, S.; Koychev, I.; Gunn, R.N.; Lawson, J.; Zamboni, G.; Ridha, B.; Sahakian, B.J.; et al. Gait in Mild Alzheimer’s Disease: Feasibility of Multi-Center Measurement in the Clinic and Home with Body-Worn Sensors: A Pilot Study. J. Alzheimer’s Dis. 2018, 63, 331–341. [Google Scholar] [CrossRef]
- Nishiguchi, S.; Yorozu, A.; Adachi, D.; Takahashi, M.; Aoyama, T. Association between mild cognitive impairment and trajectory-based spatial parameters during timed up and go test using a laser range sensor. J. Neuroeng. Rehabil. 2017, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Fleiner, T.; Häussermann, P.; Mellone, S.; Zijlstra, W. Sensor-based assessment of mobility-related behavior in dementia: Feasibility and relevance in a hospital context. Int. Psychogeriatr. 2016, 28, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ramírez, A.; Martinikorena, I.; Lecumberri, P.; Gómez, M.; Millor, N.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Izquierdo, M. Dual Task Gait Performance in Frail Individuals with and without Mild Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2016, 42, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, M.; Mitoma, H.; Sanjo, N.; Higuma, M.; Terashi, H.; Yokota, T. Ambulatory Gait Behavior in Patients with Dementia: A Comparison with Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 817–826. [Google Scholar] [CrossRef]
- González, I.; Lopez-Nava, I.H.; Fontecha, J.; Muñoz-Meléndez, A.; Pérez-SanPablo, A.I.; Quiñones-Urióstegui, I. Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway. J. Biomed. Inform. 2016, 62, 210–223. [Google Scholar] [CrossRef]
- Raknim, P.; Lan, K.C. Gait Monitoring for Early Neurological Disorder Detection Using Sensors in a Smartphone: Validation and a Case Study of Parkinsonism. Telemed. E-Health 2016, 22, 75–81. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Chung, P.C.; Wang, W.H.; Pai, M.C.; Wang, C.Y.; Lin, C.W.; Wu, H.L.; Wang, J.S. Gait and balance analysis for patients with Alzheimer’s disease using an inertial-sensor-based wearable instrument. IEEE J. Biomed. Health Inform. 2014, 18, 1822–1830. [Google Scholar] [CrossRef]
- Gietzelt, M.; Feldwieser, F.; Gövercin, M.; Steinhagen-Thiessen, E.; Marschollek, M. A prospective field study for sensor-based identification of fall risk in older people with dementia. Inform. Health Soc. Care 2014, 39, 249–261. [Google Scholar] [CrossRef]
- Gillain, S.; Pétermans, J. Contribution of new techniques to study the gait in old populations. Ann. Phys. Rehabil. Med. 2013, 56, 384–395. [Google Scholar] [CrossRef]
- Gramkow, M.H.; Brink-Kjaer, A.; Clemmensen, F.K.; Sjaelland, N.S.; Waldemar, G.; Jennum, P.; Hasselbalch, S.G.; Frederiksen, K.S. Diagnostic performance of actigraphy in Alzheimer’s disease using a machine learning classifier—A cross-sectional memory clinic study. Alzheimer’s Res. Ther. 2025, 17, 111. [Google Scholar] [CrossRef]
- Demiris, G.; Harrison, S.; Sefcik, J.; Skubic, M.; Richmond, T.S.; Hodgson, N.A. Feasibility and Acceptability of a Technology-Mediated Fall Risk Prevention Intervention for Older Adults with Mild Cognitive Impairment. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2025, 80, glaf043. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.S.; Liu, H.Z.; Fang, J.; Wang, S.J.; Han, Y.X.; Meng, J.; Han, Y.; Zou, H.M.; Gu, Q.; Hu, X.; et al. Effects of Tai Chi on Cognitive Function in Older Adults with Type 2 Diabetes Mellitus: Randomized Controlled Trial Using Wearable Devices in a Mobile Health Model. J. Med. Internet Res. 2025, 27, e77014. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Yang, T.; Xie, Q.; Lledos, G.; Chou, W.H.; Yu, W. Modeling and mobile home monitoring of behavioral and psychological symptoms of dementia (BPSD). BMC Psychiatry 2024, 24, 197. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.B.; Akter, S.; Rao, P.; Kiselica, A.; Ranum, R.; Thomas, J.M.; Guess, T.M. Feasibility of Using a Novel, Multimodal Motor Function Assessment Platform with Machine Learning to Identify Individuals with Mild Cognitive Impairment. Alzheimer Dis. Assoc. Disord. 2024, 38, 344–350. [Google Scholar] [CrossRef]
- Snene, M.; Graf, C.; Vayne-Bossert, P.; Pautex, S. Pain Assessment for Patients with Dementia and Communication Impairment: Feasibility Study of the Usage of Artificial Intelligence-Enabled Wearables. Sensors 2024, 24, 6298. [Google Scholar] [CrossRef]
- Zolfaghari, S.; Kristoffersson, A.; Folke, M.; Lindén, M.; Riboni, D. Unobtrusive Cognitive Assessment in Smart-Homes: Leveraging Visual Encoding and Synthetic Movement Traces Data Mining. Sensors 2024, 24, 1381. [Google Scholar] [CrossRef]
- Hantke, N.C.; Kaye, J.; Mattek, N.; Wu, C.Y.; Dodge, H.H.; Beattie, Z.; Woltjer, R. Correlating continuously captured home-based digital biomarkers of daily function with postmortem neurodegenerative neuropathology. PLoS ONE 2023, 18, e0286812. [Google Scholar] [CrossRef]
- Kimura, N.; Sasaki, Y.; Masuda, T.; Ataka, T.; Eguchi, A.; Kakuma, T.; Matsubara, E. Lifestyle factors that affect cognitive function–a longitudinal objective analysis. Front. Public Health 2023, 11, 1215419. [Google Scholar] [CrossRef]
- Freytag, J.; Mishra, R.K.; Street, R.L.; Catic, A.; Dindo, L.; Kiefer, L.; Najafi, B.; Naik, A.D. Using Wearable Sensors to Measure Goal Achievement in Older Veterans with Dementia. Sensors 2022, 22, 9923. [Google Scholar] [CrossRef]
- Ramazi, R.; Bowen, M.E.L.; Flynn, A.J.; Beheshti, R. Developing Acute Event Risk Profiles for Older Adults with Dementia in Long-Term Care Using Motor Behavior Clusters Derived from Deep Learning. J. Am. Med. Dir. Assoc. 2022, 23, 1977–1983.e1971. [Google Scholar] [CrossRef]
- Cullen, A.; Mazhar, M.K.A.; Smith, M.D.; Lithander, F.E.; Ó Breasail, M.Ó.; Henderson, E.J. Wearable and Portable GPS Solutions for Monitoring Mobility in Dementia: A Systematic Review. Sensors 2022, 22, 3336. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Go, T.H.; Hong, S.H.; Kim, S.H.; Han, J.H.; Kang, Y.; Kang, D.R. Digital Biomarkers in Living Labs for Vulnerable and Susceptible Individuals: An Integrative Literature Review. Yonsei Med. J. 2022, 63, S43–S55. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.; Yoon, H.; Youm, C.; Kim, S.; Lee, M.; Park, H.; Kim, B.; Choi, H.; Noh, Y. Prediction of decline in global cognitive function using machine learning with feature ranking of gait and physical fitness outcomes in older adults. Int. J. Environ. Res. Public Health 2021, 18, 11347. [Google Scholar] [CrossRef] [PubMed]
- Mendez Colmenares, A.; Voss, M.W.; Fanning, J.; Salerno, E.A.; Gothe, N.P.; Thomas, M.L.; McAuley, E.; Kramer, A.F.; Burzynska, A.Z. White matter plasticity in healthy older adults: The effects of aerobic exercise. NeuroImage 2021, 239, 118305. [Google Scholar] [CrossRef]
- Dillon-Rossiter, K.; Prapavessis, H. REducing SEDENTary behavior among mild to moderate cognitively impaired assisted living residents: A pilot randomized controlled trial (RESEDENT study). J. Aging Phys. Act. 2021, 29, 27–35. [Google Scholar] [CrossRef]
- De Souto-Barreto, P.; Pothier, K.; Soriano, G.; Lussier, M.; Bherer, L.; Guyonnet, S.; Piau, A.; Ousset, P.J.; Vellas, B. A Web-Based Multidomain Lifestyle Intervention for Older Adults: The eMIND Randomized Controlled Trial. J. Prev. Alzheimer’s Dis. 2021, 8, 142–150. [Google Scholar] [CrossRef]
- Khan, T.; Jacobs, P.G. Prediction of Mild Cognitive Impairment Using Movement Complexity. IEEE J. Biomed. Health Inform. 2021, 25, 227–236. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Ehsani, H.; Wendel, C.; Zamrini, E.; Connor, K.O.; Mohler, J. Screening older adults for amnestic mild cognitive impairment and early-stage Alzheimer’s disease using upper-extremity dual-tasking. Sci. Rep. 2019, 9, 10911. [Google Scholar] [CrossRef]
- Lussier, M.; Lavoie, M.; Giroux, S.; Consel, C.; Guay, M.; Macoir, J.; Hudon, C.; Lorrain, D.; Talbot, L.; Langlois, F.; et al. Early Detection of Mild Cognitive Impairment with In-Home Monitoring Sensor Technologies Using Functional Measures: A Systematic Review. IEEE J. Biomed. Health Inform. 2019, 23, 838–847. [Google Scholar] [CrossRef]
- Ehsani, H.; Mohler, J.; O’Connor, K.; Zamrini, E.; Tirambulo, C.; Toosizadeh, N. The association between cognition and dual-tasking among older adults: The effect of motor function type and cognition task difficulty. Clin. Interv. Aging 2019, 14, 659–669. [Google Scholar] [CrossRef]
- Kaye, J.; Reynolds, C.; Bowman, M.; Sharma, N.; Riley, T.; Golonka, O.; Lee, J.; Quinn, C.; Beattie, Z.; Austin, J.; et al. Methodology for establishing a community-wide life laboratory for capturing unobtrusive and continuous remote activity and health data. J. Vis. Exp. 2018, 2018, 56942. [Google Scholar] [CrossRef]
- Byrom, B.; Mc Carthy, M.; Schueler, P.; Muehlhausen, W. Brain Monitoring Devices in Neuroscience Clinical Research: The Potential of Remote Monitoring Using Sensors, Wearables, and Mobile Devices. Clin. Pharmacol. Ther. 2018, 104, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Makizako, H.; Doi, T.; Park, H.; Tsutsumimoto, K.; Verghese, J.; Suzuki, T. Effects of Combined Physical and Cognitive Exercises on Cognition and Mobility in Patients with Mild Cognitive Impairment: A Randomized Clinical Trial. J. Am. Med. Dir. Assoc. 2018, 19, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Hervas, R.; Fontecha, J.; González, I. m-Health: Lessons Learned by m-Experiences. Sensors 2018, 18, 1569. [Google Scholar] [CrossRef]
- Artusi, C.A.; Mishra, M.; Latimer, P.; Vizcarra, J.A.; Lopiano, L.; Maetzler, W.; Merola, A.; Espay, A.J. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Park. Relat. Disord. 2018, 46, S53–S56. [Google Scholar] [CrossRef]
- Riboni, D.; Bettini, C.; Civitarese, G.; Janjua, Z.H.; Helaoui, R. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 2016, 67, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, M.; Sabbagh, M.; Lin, I.; Morgan, P.; Grewal, G.S.; Mohler, J.; Coon, D.W.; Najafi, B. Sensor-based balance training with motion feedback in people with mild cognitive impairment. J. Rehabil. Res. Dev. 2016, 53, 945–958. [Google Scholar] [CrossRef]
- Costa, L.; Gago, M.F.; Yelshyna, D.; Ferreira, J.; Silva, H.D.; Rocha, L.; Sousa, N.; Bicho, E. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease. Comput. Intell. Neurosci. 2016, 2016, 3891253. [Google Scholar] [CrossRef]
- Petersen, J.; Austin, D.; Mattek, N.; Kaye, J. Time out-of-home and cognitive, physical, and emotional wellbeing of older adults: A longitudinal mixed effects model. PLoS ONE 2015, 10, e0139643. [Google Scholar] [CrossRef]
- Akl, A.; Taati, B.; Mihailidis, A. Autonomous unobtrusive detection of mild cognitive impairment in older adults. IEEE Trans. Biomed. Eng. 2015, 62, 1383–1394. [Google Scholar] [CrossRef]
- Thielke, S.M.; Mattek, N.; Hayes, T.L.; Dodge, H.H.; Quiñones, A.R.; Austin, D.; Petersen, J.; Kaye, J. Associations between observed in-home behaviors and self-reported low mood in community-dwelling older adults. J. Am. Geriatr. Soc. 2014, 62, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.; Maxwell, S.A.; Mattek, N.; Hayes, T.L.; Dodge, H.H.; Pavel, M.; Jimison, H.B.; Wild, K.; Boise, L.; Zitzelberger, T.A. Intelligent Systems For Assessing Aging Changes: Home-based, unobtrusive, and continuous assessment of aging. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2011, 66, i180–i190. [Google Scholar] [CrossRef] [PubMed]
- Kearns, W.D.; Nams, V.O.; Fozard, J.L. Tortuosity in movement paths is related to cognitive impairment wireless fractal Estimation in assisted living facility residents. Methods Inf. Med. 2010, 49, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Hagler, S.; Austin, D.; Hayes, T.L.; Kaye, J.; Pavel, M. Unobtrusive and ubiquitous in-home monitoring: A methodology for continuous assessment of gait velocity in elders. IEEE Trans. Biomed. Eng. 2010, 57, 813–820. [Google Scholar] [CrossRef]
- Vlotinou, P.; Tsiakiri, A.; Frantzidis, C.A.; Katsouri, I.-G.; Aggelousis, N. The effect of an interventional movement program on the mechanical gait characteristics of a patient with dementia. Eng. Proc. 2023, 50, 4. [Google Scholar]
- Tsiara, A.A.; Plakias, S.; Kokkotis, C.; Veneri, A.; Mina, M.A.; Tsiakiri, A.; Kitmeridou, S.; Christidi, F.; Gourgoulis, E.; Doskas, T. Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis. Neurol. Int. 2025, 17, 45. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Vlotinou, P.; Kedraka, K.; Tsiptsios, D.; Karatzetzou, S.; Mitsou, L.; Tsamakis, K.; Kitmeridou, S.; Nikova, A.; Aggelousis, N. Remote learning for adults with mild cognitive impairment in the new landscape of COVID-19 restrictions. Adv. Soc. Sci. Res. J. 2022, 9, 382–394. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Plakias, S.; Vlotinou, P.; Athanasouli, P.; Terzoudi, A.; Kyriazidou, S.; Serdari, A.; Karakitsiou, G.; Megari, K.; Aggelousis, N. Ιnnovative health promotion strategies: A 6-month longitudinal study on computerized cognitive training for older adults with minor neurocognitive disorders. Eur. J. Investig. Health Psychol. Educ. 2025, 15, 34. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Koutzmpi, V.; Megagianni, S.; Toumaian, M.; Geronikola, N.; Despoti, A.; Kanellopoulou, S.; Arampatzi, X.; Margioti, E.; Davila, A. Remote neuropsychological evaluation of older adults. Appl. Neuropsychol. Adult 2024, 31, 796–803. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Ioannidis, P.; Vlotinou, P.; Kokkotis, C.; Megagianni, S.; Toumaian, M.; Terzoudi, K.; Koutzmpi, V.; Despoti, A.; Megari, K. The role of a computerized cognitive intervention program on the neuropsychiatric symptoms in mild cognitive impairment. Aging Med. Healthc. 2024, 15, 122–128. [Google Scholar] [CrossRef]
- Despoti, A.; Megari, K.; Tsiakiri, A.; Toumaian, M.; Koutzmpi, V.; Liozidou, A.; Tsapanou, A. Effectiveness of remote neuropsychological interventions: A systematic review. Appl. Neuropsychol. Adult 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]







| Technique | Unit of Analysis | Minimum Threshold | Weight (Node Size) | Visualization Type |
|---|---|---|---|---|
| Co-authorship | Countries | 2 documents | Number of documents | Network |
| Bibliographic Coupling | Organizations | 4 documents | Number of documents | Network |
| Co-citation | Sources | 6 citations | Number of documents | Network |
| Co-occurrence | Author Keywords | 6 occurrences | Keyword frequency | Network |
| No. | Author | Documents | Citations |
|---|---|---|---|
| 1 | Najafi, Bijan | 8 | 289 |
| 2 | Kaye, Jeffrey A. | 6 | 563 |
| 3 | Del Din, Silvia | 5 | 197 |
| 4 | Hausdorff, Jeffrey M. | 5 | 170 |
| 5 | Mattek, Nora C. | 5 | 426 |
| 6 | Rochester, Lynn | 4 | 197 |
| 7 | Brodie, Matthew Andrew D. | 4 | 57 |
| 8 | Fleiner, Tim | 4 | 48 |
| 9 | Häussermann, Peter | 4 | 48 |
| 10 | Lord, S. R. | 4 | 57 |
| 11 | Mohler, Jane | 4 | 253 |
| 12 | Zhou, He | 4 | 124 |
| 13 | Zijlstra, Weibren | 4 | 48 |
| 14 | Austin, Daniel | 3 | 252 |
| 15 | Chan, Lloyd L.Y. | 3 | 27 |
| 16 | Dodge, Hiroko Hayama | 3 | 275 |
| 17 | Hayes, Tamara L. | 3 | 407 |
| 18 | Kunik, Mark E. | 3 | 102 |
| 19 | Lamoth, Claudine C.J. | 3 | 228 |
| 20 | Mc Ardle, Riona | 3 | 95 |
| 21 | Naik, Anand Dinkar | 3 | 80 |
| 22 | Schwenk, Michael | 3 | 175 |
| 23 | Taati, Babak | 3 | 195 |
| 24 | Thomas, Alan Jeffrey | 3 | 95 |
| 25 | Toosizadeh, Nima | 3 | 108 |
| Gait Parameter | Finding/Difference |
|---|---|
| Maximal walking speed [24] | Each SD increase → 32% lower hazard for incident dementia; MCI/AD show reduced speed vs. controls |
| Daily step counts [24] | Lower step counts in individuals who later developed dementia (30% decrease per SD) |
| Step-time variability [27] | Increased in DLB vs. AD and controls; higher variability indicates greater motor-cognitive impairment |
| Swing-time variability [27] | Significantly increased in DLB relative to AD and CU groups |
| Stride velocity/stride length [27] | Reduced in DLB and AD compared to controls |
| Minimum Toe Clearance (MTC) variability [23] | Significantly higher in MCI (p = 0.016, d = 0.53) |
| Mean MTC [23] | No significant difference between healthy and MCI (p = 0.980) |
| Dual-task gait speed [30] | Slower gait speed under dual-task vs. single-task; larger decrements in cognitive impairment |
| Dual-task stride length [30] | Shorter stride length in cognitive impairment during dual-task walking |
| Dual-task mid-swing elevation [30] | Reduced in cognitive impairment during dual-task |
| Double-limb support (% time) [30] | Increased in MCI and dementia, greater under dual-task |
| Sway velocity (balance tests) [29] | Higher sway velocity in cognitively impaired (ηp2 = 0.190, p < 0.001) |
| Sway path length [29] | Significantly higher in cognitive impairment (ηp2 = 0.144, p < 0.001) |
| Turning performance [82] | IMU-based turning detection remains accurate; AD individuals show slower turning compared to controls |
| Hip extensor angle [32] | Lower hip extension angle in dementia → associated with wheelchair dependence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiakiri, A.; Plakias, S.; Giarmatzis, G.; Tsakni, G.; Christidi, F.; Karakitsiou, G.; Georgousopoulou, V.; Manomenidis, G.; Tsiptsios, D.; Vadikolias, K.; et al. Wearable Sensor Technologies and Gait Analysis for Early Detection of Dementia: Trends and Future Directions. Sensors 2025, 25, 7669. https://doi.org/10.3390/s25247669
Tsiakiri A, Plakias S, Giarmatzis G, Tsakni G, Christidi F, Karakitsiou G, Georgousopoulou V, Manomenidis G, Tsiptsios D, Vadikolias K, et al. Wearable Sensor Technologies and Gait Analysis for Early Detection of Dementia: Trends and Future Directions. Sensors. 2025; 25(24):7669. https://doi.org/10.3390/s25247669
Chicago/Turabian StyleTsiakiri, Anna, Spyridon Plakias, Georgios Giarmatzis, Georgia Tsakni, Foteini Christidi, Georgia Karakitsiou, Vasiliki Georgousopoulou, Georgios Manomenidis, Dimitrios Tsiptsios, Konstantinos Vadikolias, and et al. 2025. "Wearable Sensor Technologies and Gait Analysis for Early Detection of Dementia: Trends and Future Directions" Sensors 25, no. 24: 7669. https://doi.org/10.3390/s25247669
APA StyleTsiakiri, A., Plakias, S., Giarmatzis, G., Tsakni, G., Christidi, F., Karakitsiou, G., Georgousopoulou, V., Manomenidis, G., Tsiptsios, D., Vadikolias, K., Aggelousis, N., & Vlotinou, P. (2025). Wearable Sensor Technologies and Gait Analysis for Early Detection of Dementia: Trends and Future Directions. Sensors, 25(24), 7669. https://doi.org/10.3390/s25247669

