A Compact 2.3 μm DFB-Laser CO Sensor Using MPC-LITES for Real-Time Monitoring of Cigarette Smoke
Abstract
1. Introduction
2. Experimental Setup
2.1. Spectral Line Selection
2.2. Characteristics of the 2.3 μm DFB Diode Laser
2.3. Experimental Setup of the MPC–LITES System
2.4. Frequency Response of the Quartz Tuning Fork
3. Results and Discussion
3.1. Optimization of the Modulation Depth
3.2. Sensor Response and Calibration Linearity
3.3. Detection Limit and Allan Deviation Analysis
3.4. Real-Time Application in Indoor CO Monitoring
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afzal, M.; Agarwal, S.; Elshaikh, R.H.; Babker, A.M.; Choudhary, R.K.; Prabhakar, P.K.; Zahir, F.; Sah, A.K. Carbon monoxide poisoning: Diagnosis, prognostic factors, treatment strategies, and future perspectives. Diagnostics 2025, 15, 581. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Kumari, A. Carbon Monoxide Concentration in Atmosphere—A Review. In IRC-SET 2022: Proceedings of the 8th IRC Conference on Science, Engineering and Technology, August 2022, Singapore; Springer: Berlin/Heidelberg, Germany, 2023; pp. 97–109. [Google Scholar]
- Liang, Q.; Roethig, H.J.; Lipowicz, P.J.; Jin, Y.; Mendes, P.E. The effect of cigarette burn time on exposure to nicotine and carbon monoxide in adult smokers. Regul. Toxicol. Pharmacol. 2008, 50, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, A.; Arora, T.; Singh, S.; Singh, R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef]
- Kar-Purkayastha, I.; Finlay, S.; Murray, V. Low-level exposure to carbon monoxide. Br. J. Gen. Pract. 2012, 62, 404. [Google Scholar] [CrossRef]
- Russell, M.; Cole, P.; Brown, E. Absorption by non-smokers of carbon monoxide from room air polluted by tobacco smoke. Lancet 1973, 301, 576–579. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Léquipar, A.; Singh, M.; Dillinger, J.G.; Trimaille, A.; Bouleti, C.; Delmas, C.; Schurtz, G.; Houssany-Pissot, S.; Vasram, R.R.; Gerbaud, E. The prognostic value of expiratory carbon monoxide level for outcome prediction after myocardial infarction. Eur. J. Prev. Cardiol. 2025, zwaf559. [Google Scholar] [CrossRef]
- Manganese, S.S.N.R.U.; Advisory, D.W. Carbon monoxide concentrations: Data to 2023. Carbon 2024. [Google Scholar]
- Morakinyo, O.M.; Adebowale, A.S.; Mokgobu, M.I.; Mukhola, M.S. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: An ecological study. BMJ Open 2017, 7, e013941. [Google Scholar] [CrossRef]
- Townsend, C.L.; Maynard, R.L. Effects on health of prolonged exposure to low concentrations of carbon monoxide. Occup. Environ. Med. 2002, 59, 708–711. [Google Scholar] [CrossRef]
- Wu, J.-X.; Lau, A.T.; Xu, Y.-M. Indoor secondary pollutants cannot be ignored: Third-hand smoke. Toxics 2022, 10, 363. [Google Scholar] [CrossRef]
- Mallah, M.A.; Soomro, T.; Ali, M.; Noreen, S.; Khatoon, N.; Kafle, A.; Feng, F.; Wang, W.; Naveed, M.; Zhang, Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front. Public Health 2023, 11, 967047. [Google Scholar] [CrossRef]
- Setshedi, K.Z.; Maity, A.; Nyakale, A.; Ramahlare, S.; Chauke, V.P.; Nkomzwayo, T.; Mandiwana, V.; Ray, S.S.; Hlekelele, L. Removal of Tobacco Specific Carcinogenic Nitrosamines in Mainstream Cigarette Smoke and Aqueous Solution—A Review. ACS Omega 2025, 10, 20949–20967. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Mehlawat, S.; Dhariwal, N.; Kumar, A.; Sanger, A. Comprehensive review on gas sensors: Unveiling recent developments and addressing challenges. Mater. Sci. Eng. B 2024, 308, 117616. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A review on recent developments and advances in environmental gas sensors to monitor toxic gas pollutants. Environ. Prog. Sustain. Energy 2023, 42, e14126. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Z.; Gao, X.; Yang, K.; Niu, Z.; Yan, C.; Chen, H.; Tang, H.; Du, S.; Fang, X. Indoor concentrations and exposure levels of CO, SO2, NO2, and O3 in Chinese residences, schools, and offices (2000–2021): A systematic review. J. Hazard. Mater. 2025, 494, 138452. [Google Scholar] [CrossRef]
- Villanueva, F.; Ródenas, M.; Ruus, A.; Saffell, J.; Gabriel, M.F. Sampling and analysis techniques for inorganic air pollutants in indoor air. Appl. Spectrosc. Rev. 2022, 57, 531–579. [Google Scholar] [CrossRef]
- Salthammer, T. Carbon monoxide as an indicator of indoor air quality. Environ. Sci. Atmos. 2024, 4, 291–305. [Google Scholar] [CrossRef]
- Fidancı, İ.; Kızıltaş, Ö. Exhaled Carbon Monoxide Measurement Errors: A Systematic Review of Causes and Solutions. Arşiv Kaynak Tarama Derg. 2025, 34, 184–194. [Google Scholar] [CrossRef]
- Cho, J.H. Detection of smoking in indoor environment using machine learning. Appl. Sci. 2020, 10, 8912. [Google Scholar] [CrossRef]
- Hussain, S.; Begi, A.N.; Amu-Darko, J.N.O.; Yusuf, K.; Manavalan, R.K.; Iqbal, A.; Zhang, X.; Qiao, G.; Liu, G. MOF-derived Mo-doped Co3O4: A hierarchical yeast-like structure for superior carbon monoxide sensing. Sens. Actuators B Chem. 2024, 420, 136489. [Google Scholar] [CrossRef]
- Qin, C.; Wei, Z.; Wang, B.; Wang, Y. Sn and Mn co-doping synergistically promotes the sensing properties of Co3O4 sensor for high-sensitive CO detection. Sens. Actuators B Chem. 2023, 390, 133930. [Google Scholar] [CrossRef]
- Liang, J.-G.; Jiang, Y.; Wu, J.-K.; Wang, C.; von Gratowski, S.; Gu, X.; Pan, L. Multiplex-gas detection based on non-dispersive infrared technique: A review. Sens. Actuators A Phys. 2023, 356, 114318. [Google Scholar] [CrossRef]
- Moldoveanu, S.; Bussey, R.O. Total Particulate Matter (TPM), “Tar”, Water, Nicotine, and Carbon Monoxide. In Analytical Methods for Tobacco and Nicotine Harm Reduction; Springer: Berlin/Heidelberg, Germany, 2025; pp. 57–99. [Google Scholar]
- Chen, C.; Wang, X.; Ye, Y.; Guo, C.; Na, B.; Ning, X.; Tian, Y.; Li, L.; Zhao, X.; Du, H. The Effective Control of Harmful Components in Smoke Using a Novel Laser-Based Smoking Device. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express 2018, 26, 32103–32110. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, Y.; Cai, Y.; Bao, X.; Gao, S. Recent advances in optical fiber-based gas sensors utilizing light-induced acoustic/elastic techniques. Photoacoustics 2025, 43, 100715. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zifarelli, A.; Dello Russo, S.; Wu, H.; Menduni, G.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Dong, L. High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy. Appl. Phys. Rev. 2021, 8, 041409. [Google Scholar] [CrossRef]
- Xu, L.; Liu, N.; Zhou, S.; Zhang, L.; Yu, B.; Fischer, H.; Li, J. Dual-frequency modulation quartz crystal tuning fork–enhanced laser spectroscopy. Opt. Express 2020, 28, 5648–5657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Application of quartz tuning fork in photodetector based on photothermal effect. IEEE Photonics Technol. Lett. 2019, 31, 1592–1595. [Google Scholar] [CrossRef]
- Wu, Q.; Lv, H.; Li, J.; Yang, Z.; Kan, R.; Giglio, M.; Zhu, W.; Zhong, Y.; Sampaolo, A.; Patimisco, P. Side-excitation light-induced thermoelastic spectroscopy. Opt. Lett. 2023, 48, 562–565. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, J.; Lu, P.; Sima, C.; Liu, D. Recent advances in light-induced thermoelastic spectroscopy for gas sensing: A review. Remote Sens. 2022, 15, 69. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, S.; Fang, C.; He, Y.; Sun, H.; Liu, J.; Ma, Y. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron. Adv. 2024, 7, 230230. [Google Scholar] [CrossRef]
- Wang, R.; Qiao, S.; He, Y.; Ma, Y. Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork. Opto-Electron. Adv. 2025, 8, 240275. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Qiao, S.; Liu, X.; Zhang, C.; Duan, X.; Ma, Y. Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz. Opto-Electron. Adv. 2025, 9, 250150. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, S.; Zhang, L.; Yu, B.; Fischer, H.; Ren, W.; Li, J. Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy. Laser Phys. Lett. 2018, 15, 085701. [Google Scholar] [CrossRef]
- Ding, J.; He, T.; Zhou, S.; Zhang, L.; Li, J. Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy. Appl. Phys. B 2018, 124, 78. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, C.; Zhang, Y.; Zheng, J.; Wang, Y.; Tittel, F.K. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing. Opt. Lett. 2020, 45, 1894–1897. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.C.; Kumar, S.; Parmar, A.; Mann, M.; Prakash, S.; Thakur, S.N. Standoff pump-probe photothermal detection of hazardous chemicals. Sci. Rep. 2020, 10, 15053. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, S.; He, Y.; Ma, Y. High-stability and fast calibration-free temperature measurement based on light-induced thermoelastic spectroscopy. Ultrafast Sci. 2025, 5, 0083. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Fan, H.; Hu, M.; Wang, H.; Zhou, J.; Lv, J.; Liang, J.; Wang, Q. Cavity-enhanced light-induced thermoelastic spectroscopy for trace-gas sensing. Opt. Express 2024, 32, 33618–33627. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, X.; Sun, H.; He, Y.; Qiao, S. An ultra-highly sensitive LITES sensor based on multi-pass cell with ultra-dense spot pattern designed by multi-objective algorithm. PhotoniX 2025, 6, 26. [Google Scholar] [CrossRef]
- Sun, H.; Qiao, S.; He, Y.; Sun, X.; Ma, Y. Parts-per-quadrillion level gas molecule detection: CO-LITES sensing. Light Sci. Appl. 2025, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qiao, S.; Wang, R.; He, Y.; Fang, C.; Liang, T. A novel tapered quartz tuning fork-based laser spectroscopy sensing. Appl. Phys. Rev. 2024, 11, 041412. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Qiao, S.; Duan, X.; Qi, H.; Ma, Y. Hydrogen-enhanced light-induced thermoelastic spectroscopy sensing. Photonics Res. 2024, 13, 194–200. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; He, Y.; Qiao, S.; Sun, H. Design of multipass cell with dense spot patterns and its performance in a light-induced thermoelastic spectroscopy-based methane sensor. Light Adv. Manuf. 2025, 6, 5–13. [Google Scholar] [CrossRef]
- Sun, H.; He, Y.; Qiao, S.; Liu, Y.; Ma, Y. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell. Opto-Electron. Sci. 2024, 3, 240013. [Google Scholar] [CrossRef]
- Wei, T.; Wu, H.; Dong, L.; Cui, R.; Jia, S. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector. Opt. Express 2021, 29, 12357–12364. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, C.; Hu, L.; Song, F.; Zhang, Y.; Wang, Y.; Tittel, F.K. Near-infrared fiber-coupled off-axis cavity-enhanced thermoelastic spectroscopic sensor system for in situ multipoint ammonia leak monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, E.R.; Hashemi, R.; Karlovets, E.V.; Skinner, F.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Ruan, S.; Gao, G.; Yang, Y.; Yang, H.; Cai, T. Measurement and validation of high-temperature CO spectral line parameters near 2.3 μm using TDLAS for combustion diagnostics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125577. [Google Scholar] [CrossRef]
- Giglio, M.; Patimisco, P.; Sampaolo, A.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Allan deviation plot as a tool for quartz-enhanced photoacoustic sensors noise analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 63, 555–560. [Google Scholar] [CrossRef]
- Gerding, T.; Marion, J.W.; Stephenson, D. Carbon Monoxide Exposure Potential Associated with the Use of Recreational Watercraft. J. Environ. Health 2021, 84, 8–14. [Google Scholar]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Lin, H.; Hong, G.; He, J.; Wang, L.; Zhuang, R.; Zhu, W.; Zhong, Y.; Yu, J.; Zheng, H. A Compact 2.3 μm DFB-Laser CO Sensor Using MPC-LITES for Real-Time Monitoring of Cigarette Smoke. Sensors 2025, 25, 6894. https://doi.org/10.3390/s25226894
Lin L, Lin H, Hong G, He J, Wang L, Zhuang R, Zhu W, Zhong Y, Yu J, Zheng H. A Compact 2.3 μm DFB-Laser CO Sensor Using MPC-LITES for Real-Time Monitoring of Cigarette Smoke. Sensors. 2025; 25(22):6894. https://doi.org/10.3390/s25226894
Chicago/Turabian StyleLin, Leqing, Haoyang Lin, Guantian Hong, Jianfeng He, Lihao Wang, Ruobin Zhuang, Wenguo Zhu, Yongchun Zhong, Jianhui Yu, and Huadan Zheng. 2025. "A Compact 2.3 μm DFB-Laser CO Sensor Using MPC-LITES for Real-Time Monitoring of Cigarette Smoke" Sensors 25, no. 22: 6894. https://doi.org/10.3390/s25226894
APA StyleLin, L., Lin, H., Hong, G., He, J., Wang, L., Zhuang, R., Zhu, W., Zhong, Y., Yu, J., & Zheng, H. (2025). A Compact 2.3 μm DFB-Laser CO Sensor Using MPC-LITES for Real-Time Monitoring of Cigarette Smoke. Sensors, 25(22), 6894. https://doi.org/10.3390/s25226894

