Abstract
Microcalcifications (HAp, CaCO3, and CaC2O4) in breast tissue may indicate malignancy. Early-stage breast cancer diagnosis may benefit from the clinical application of dual-energy techniques. Dual-energy cone-beam computed tomography (CBCT) could strongly contribute to an accurate diagnosis, especially in dense breasts. This study focused on photon-counting detector alternatives to the standard cesium iodide (CsI) that CBCT currently relies on and investigated potential advantages over the employed CsI scintillators. Denser detector materials with a higher effective atomic number than CsI could improve image quality. A micro-CBCT was simulated in GATE using seven different detector configurations (CsI, bismuth germanate (BGO), lutetium oxyorthosilicate (LSO), lutetium–yttrium oxyorthosilicate (LYSO), gadolinium aluminum gallium garnet (GAGG), lanthanum bromide (LaBr3), and cadmium zinc telluride (CZT)) and four breast tissue phantoms containing microcalcifications of both type I and type II. The dual-energy methodology was applied to planar and tomographic acquisition data. Tomographic data were reconstructed using filtered backprojection (FBP) and the ordered-subsets expectation-maximization (OSEM) algorithm. Image quality was measured using contrast-to-noise ratio (CNR) values. Both monoenergetic and polyenergetic models were considered. CZT and GAGG crystals presented higher CNR values than CsI. HAp microcalcifications exhibited the highest CNR values, which, when accompanied by OSEM, could be distinguished for classification. Detector configurations based on CZT or GAGG crystals could be adequate alternatives to CsI in dual-energy CBCT.
Keywords:
CBCT; dual-energy CBCT; microcalcifications; CNR; HAp; photon-counting detectors; GAGG; CZT; breast imaging