Advanced Metal–Organic Framework-Based Sensor Systems for Gas and Environmental Monitoring: From Material Design to Embedded Applications
Abstract
1. Introduction
2. Toxic Gases: Sources, Effects, and Monitoring Needs
2.1. Major Toxic Gases in the Environment
2.1.1. Toxic Gas Sources
2.1.2. Health and Environmental Impacts
2.2. Monitoring Requirements and Challenges
2.2.1. Sensitivity, Selectivity, Response Time, Stability
2.2.2. Portability and Energy Efficiency
3. Sensor Materials for Toxic Gas Detection
3.1. Traditional Sensor Materials
3.1.1. Metal Oxides and Chemiresistive Materials
3.1.2. Optical and Photonic Materials
3.1.3. Electrochemical and Hybrid Nanomaterials
4. Metal–Organic Frameworks (MOFs) in Gas Sensing
4.1. Fundamental Properties of MOFs Relevant to Sensing
4.1.1. Porosity, High Surface Area, Tunable Chemical Functionality
4.1.2. Modular Design and Post-Synthetic Modification
4.2. MOF-Based Transduction Mechanisms
4.2.1. Electrical/Resistive Sensing
4.2.2. Optical (Fluorescence, Luminescence, Colorimetric)
4.2.3. Electrochemical Detection
4.3. MOF Composites and Hybrid Structures
4.3.1. MOF–Carbon Nanomaterial Hybrids
4.3.2. MOF–Polymer Hybrids
4.3.3. Multi-Component and MOF-Derived Hybrids
4.4. Advantages of MOF-Based Sensors over Traditional Sensor Materials
5. Integration of MOF-Based Sensors with Embedded Systems and AI
5.1. Plasmonic MOFs for Real-Time Sensing and AI-Assisted Analysis
5.2. Portable and Wearable MOF-Based Sensor Devices
5.3. Flexible Substrates, Microelectronic Integration
5.4. Advanced MOF-Based Materials for Trace Gas Detection
6. Challenges and Future Directions
6.1. Technical Challenges
6.1.1. Reproducibility and Long-Term Stability
6.1.2. Standardization of Fabrication and Device Interfaces
6.2. Data Management and Cybersecurity
6.3. Opportunities for Next-Generation Environmental Monitoring
6.3.1. IoT-Enabled MOF Sensor Networks
6.3.2. Multi-Analyte Detection and Selectivity Engineering
6.3.3. AI-Assisted Adaptive Monitoring Systems
6.4. Balancing Challenges and Opportunities
7. Conclusions and Outlooks
- Scale and reproducibility of MOF synthesis and incorporation into device structures continue to be non-trivial.
- Long-term stability under real-world conditions (humidity, temperature fluctuations, chemical interferences) must be ensured.
- Signal transduction has to be enhanced significantly, especially for room-temperature resistive sensors, to challenge already established semiconducting oxides.
- Selectivity in complex matrices is an enduring challenge to be addressed by using increasingly sophisticated methods such as MOF electronic noses or multi-sensor arrays.
- Rational design of multifunctional MOFs through defect engineering, heteroatom doping, and modular linker strategies to optimize porosity, binding affinity, and charge transport simultaneously.
- The incorporation of high-end transduction platforms such as photonic devices, plasmonic sensors, and soft electronics is aimed at enhancing detection modes and portability.
- Artificial Intelligence (AI) and Machine Learning (ML) integration, where AI/ML algorithms can decode complex sensor array outputs (e.g., MOF electronic noses) for highly accurate discrimination of VOC isomers, pollutant blends, and disease biomarkers. Supervised learning, neural networks, and hybrid chemometric approaches allow the extraction of subtle patterns in multidimensional MOF sensor datasets, improving sensitivity, selectivity, and real-time decision-making capabilities.
- Ecological and green fabrication methods such as inkjet printing, electrospinning, or MOF-CVD to develop wearable, flexible, and low-power sensor devices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| NOx | nitrogen oxides |
| SO2 | sulfur dioxide |
| CO | carbon monoxide |
| O3 | ozone |
| VOCs | volatile organic compounds |
| IR | infrared |
| UV | ultraviolet |
| QCM | quartz crystal microbalance |
| MOS | metal oxide semiconductor |
| MOFs | metal–organic frameworks |
| AI | artificial intelligence |
| CO2 | carbon dioxide |
| H2S | hydrogen sulfide |
| La | lanthanum |
| ZnO | zinc oxide |
| SnO2 | tin dioxide |
| WO3 | tungsten trioxide |
| NH3 | ammonia |
| N2H4 | hydrazine |
| FET | field-effect transistor |
| MoS2 | molybdenum disulfide |
| CH4 | methane |
| H2O | water |
| CuNCs | copper nanoclusters |
| CNQDs | nitrogen-doped carbon quantum dots |
| g-C3N4 | graphitic carbon nitride |
| NaOH | sodium hydroxide |
| h-MoO3 | hexagonal molybdenum trioxide |
| TiO2 | titanium dioxide |
| Ra/Rg | resistance ratio |
| TMDCs | transition metal dichalcogenides |
| ppb | parts per billion |
| μM | micromolar |
| ppt | parts per trillion |
| MMM | mixed-matrix membrane |
| IL | ionic liquid |
| CS | chitosan |
| PVA | polyvinyl alcohol |
| NO | nitric oxide |
| UiO-66-NH2 | amino-zirconium-based MOF |
| e-jet | electrohydrodynamic jet |
| FTIR | attenuated total reflectance–Fourier transform infrared |
| Ppy-rGO | polypyrrole–reduced graphene oxide |
| NH4+ | ammonium ion |
| H+ | proton |
| SMOx | semiconducting metal oxides |
| P3HT | poly(3-hexylthiophene) |
| CNT | carbon nanotubes |
| NO2 | nitrogen dioxide |
| Ru | ruthenium |
| PB | Prussian blue |
| IDE | interdigitated electrode |
| HMM | hidden Markov model |
| ANN | artificial neural network |
| LSTM | long short-term memory |
| CNN | convolutional neural network |
| PBA | Prussian blue analogue |
| RT | room temperature |
| Ti3C2Tx | MXene nanosheet |
| Co-MOF | cobalt-based MOF |
| FPI | Fabry–Perot interferometer |
| EGC | ethanol gas concentration |
| BGC | benzene gas concentration |
| ZnCu-MOS Zn/Cu | metal oxide semiconductor |
| In2O3 | indium oxide |
| ZIF-8 | zeolitic imidazolate framework-8 |
| AgNWs | silver nanowires |
| SERS | surface-enhanced Raman spectroscopy |
References
- Cruz-martínez, H.; Rojas-chávez, H.; Montejo-alvaro, F.; Peña-castañeda, Y.A.; Matadamas-ortiz, P.T.; Medina, D.I. Recent developments in graphene-based toxic gas sensors: A theoretical overview. Sensors 2021, 21, 1992. [Google Scholar] [CrossRef]
- Benedetto, G.; Mirica, K.A. Conductive Framework Materials for Chemiresistive Detection and Differentiation of Toxic Gases. Accounts Chem. Res. 2024, 57, 2775–2789. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, I.; Haghverdi, A.B.; Soldoozy, A.; Aghaee, T.; Biabanifard, S. Wearable Kapton graphene biosensor for detection of toxic gases. J. Hazard. Mater. Adv. 2024, 15, 100452. [Google Scholar] [CrossRef]
- David, E.; Niculescu, V.C. Volatile organic compounds (Vocs) as environmental pollutants: Occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef]
- Aldalbahi, A.; El-Naggar, M.E.; El-Newehy, M.H.; Rahaman, M.; Hatshan, M.R.; Khattab, T.A. Effects of technical textiles and synthetic nanofibers on environmental pollution. Polymers 2021, 13, 155. [Google Scholar] [CrossRef]
- Lasek, J.A.; Lajnert, R. On the Issues of NOx as Greenhouse Gases: An Ongoing Discussion. Appl. Sci. 2022, 12, 10429. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Hannun, R.M.; Razzaq, A.H.A. Air Pollution Resulted from Coal, Oil and Gas Firing in Thermal Power Plants and Treatment: A Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1002, 012008. [Google Scholar] [CrossRef]
- Ettlinger, R.; Lächelt, U.; Gref, R.; Horcajada, P.; Lammers, T.; Serre, C.; Couvreur, P.; Morris, R.E.; Wuttke, S. Toxicity of metal-organic framework nanoparticles: From essential analyses to potential applications. Chem. Soc. Rev. 2022, 51, 464–484. [Google Scholar] [CrossRef]
- Menon, D.; Chakraborty, S. How safe are nanoscale metal-organic frameworks? Front. Toxicol. 2023, 5, 1233854. [Google Scholar] [CrossRef]
- Awewomom, J.; Dzeble, F.; Takyi, Y.D.; Ashie, W.B.; Ettey, E.N.Y.O.; Afua, P.E.; Sackey, L.N.A.; Opoku, F.; Akoto, O. Addressing global environmental pollution using environmental control techniques: A focus on environmental policy and preventive environmental management. Discov. Environ. 2024, 2, 8. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, S.; Jiang, W.J.; Cai, Z.H.; Li, D.L.; Liu, Y.L.; Chen, Z.Z. Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection. Molecules 2022, 27, 2226. [Google Scholar] [CrossRef]
- Cho, S.H.; Suh, J.M.; Eom, T.H.; Kim, T.; Jang, H.W. Colorimetric Sensors for Toxic and Hazardous Gas Detection: A Review. Electron. Mater. Lett. 2020, 17, 1–17. [Google Scholar] [CrossRef]
- Allsop, T.; Neal, R. A review: Application and implementation of optic fibre sensors for gas detection. Sensors 2021, 21, 6755. [Google Scholar] [CrossRef]
- Alanazi, N.; Almutairi, M.; Alodhayb, A.N. A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications; Springer: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Sun, L.; Rotaru, A.; Robeyns, K.; Garcia, Y. A Colorimetric Sensor for the Highly Selective, Ultra-sensitive, and Rapid Detection of Volatile Organic Compounds and Hazardous Gases. Ind. Eng. Chem. Res. 2021, 60, 8788–8798. [Google Scholar] [CrossRef]
- Khoshnobish, S.R.; Ahmed, T.; Arefin, T.; Piya, A.A.; Shamim, S.U.D. Assessing the sensing performance of Janus transition metal dichalcogenides (ScSSe, TiSSe and ZrSSe) for oxygencontaining toxic gas molecules such as CO, NO, NO2 and SO2. Appl. Surf. Sci. 2024, 679, 163101. [Google Scholar] [CrossRef]
- Ou, W.; Shen, J.; Zhong, J.; He, J.; Lei, D.; Li, H.; Chen, Y.; Wang, C.; Wu, H.; Zhou, B.; et al. Rapid on-site detection of zinc pyrithione in real-life samples with unprecedented selectivity and sensitivity. Sens. Actuators B Chem. 2022, 378, 133129. [Google Scholar] [CrossRef]
- Bulowski, W.; Knura, R.; Socha, R.P.; Basiura, M.; Skibińska, K.; Wojnicki, M. Thin Film Semiconductor Metal Oxide Oxygen Sensors: Limitations, Challenges, and Future Progress. Electronics 2024, 13, 3409. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal oxide semiconductors for gas sensing. Eng. Rep. 2022, 5, e12604. [Google Scholar] [CrossRef]
- Gorbova, E.; Tzorbatzoglou, F.; Molochas, C.; Chloros, D.; Demin, A.; Tsiakaras, P. Fundamentals and principles of solid-state electrochemical sensors for high temperature gas detection. Catalysts 2021, 12, 1. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Sohrabi, H.; Maleki, F.; Khaaki, P.; Kadhom, M.; Kudaibergenov, N.; Khataee, A. Electrochemical-Based Sensing Platforms for Detection of Glucose and H2O2 by Porous Metal–Organic Frameworks: A Review of Status and Prospects. Biosensors 2023, 13, 347. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, N.; Fan, W.; Cai, H.; Zhao, D. Metal-Organic Framework Based Gas Sensors. Adv. Sci. 2021, 9, 2104374. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Çakar, S.; Özacar, M.; Salmanpour, S.; Erk, N. Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs. Top. Catal. 2021, 65, 564–576. [Google Scholar] [CrossRef]
- Mphuthi, N.; Sikhwivhilu, L.; Ray, S.S. Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors 2022, 12, 386. [Google Scholar] [CrossRef]
- Nashruddin, S.N.A.B.M.; Salleh, F.H.M.; Yunus, R.M.; Zaman, H.B. Artificial intelligence−powered electrochemical sensor: Recent advances; challenges; prospects. Heliyon 2024, 10, e37964. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Cho, S. Recent Advances in the Application of Metal–Organic Frameworks and Coordination Polymers in Electrochemical Biosensors. Chemosensors 2024, 12, 135. [Google Scholar] [CrossRef]
- Chattopadhyay, P.K.; Singha, N.R. MOF and derived materials as aerogels: Structure, property, and performance relations. Co-ord. Chem. Rev. 2021, 446, 214125. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Pham, D.T.T.; Muhammad, A.; Min, G.; Cho, S.; Park, J. Zn-H4dbp/GO for adsorptive removal and Zn-H4dbp/Au for electrochemical reduction of toxic Cr(VI) in aqueous solutions. J. Ind. Eng. Chem. 2025. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Cho, S. Recent Advancements in Metal–Organic Framework-Based Microfluidic Chips for Biomedical Applications. Micromachines 2025, 16, 736. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, S.; Fuentes-Fernandez, E.M.A.; Tan, K.; Xu, F.; Li, J.; Chabal, Y.J.; Thonhauser, T. Understanding and controlling water stability of MOF-74. J. Mater. Chem. A 2016, 4, 5176–5183. [Google Scholar] [CrossRef]
- Tang, H.; Fan, D.; Chen, Y.; Han, S. Exploring enzyme-MOF (metal-organic framework) catalytic systems: Trade-offs between enzyme activity and MOF stability. Green Chem. 2025, 27, 2605–2628. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ayyoubzadeh, S.M.; Ghorbani-Bidkorbeh, F.; Shahhosseini, S.; Dadashzadeh, S.; Asadian, E.; Mosayebnia, M.; Siavashy, S. An investigation of affecting factors on MOF characteristics for biomedical applications: A systematic review. Heliyon 2021, 7, e06914. [Google Scholar] [CrossRef]
- Sun, Q.J.; Guo, W.T.; Liu, S.Z.; Tang, X.G.; Roy, V.A.L.; Zhao, X.H. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS Appl. Mater. Interfaces 2024, 16, 45830–45860. [Google Scholar] [CrossRef]
- Zhu, J.; Wen, H.; Fan, Y.; Yang, X.; Zhang, H.; Wu, W.; Zhou, Y.; Hu, H. Recent advances in gas and environmental sensing: From micro/nano to the era of self-powered and artificial intelligent (AI)-enabled device. Microchem. J. 2022, 181, 107833. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Xu, F. Research on the Application of Artificial Intelligence Technology in Microelectronics Testing and Fault Diagnosis. In Proceedings of the 2024 3rd International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI), Zakopane, Poland, 18–20 October 2024; Volume 2024, pp. 343–347. [Google Scholar] [CrossRef]
- Dastageer, F.; Areeckal, A.S. On-Chip Integration of Micro-supercapacitor in VLSI Design for Power Management in Artificial Intelligence Processors and Memory Chips: A Review of Methods and Materials. Arab. J. Sci. Eng. 2025, 50, 15219–15234. [Google Scholar] [CrossRef]
- Yang, W.; Qin, Y.; Wang, Z.; Yu, T.; Ge, Z. Recent Advances in the Development of Flexible Sensors: Mechanisms, Materials, Performance Optimization, and Applications; Springer: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Almassad, H.A.; Abaza, R.I.; Siwwan, L.; Al-Maythalony, B.; Cordova, K.E. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting. Nat. Commun. 2022, 13, 4873. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K. Potentially toxic elements in the environment—A review of sources, sinks, pathways and mitigation measures. Rev. Environ. Health 2023, 39, 561–575. [Google Scholar] [CrossRef] [PubMed]
- Lebel, E.D.; Michanowicz, D.R.; Bilsback, K.R.; Hill, L.A.L.; Goldman, J.S.W.; Domen, J.K.; Jaeger, J.M.; Ruiz, A.; Shonkoff, S.B.C. Composition; Emissions, and Air Quality Impacts of Hazardous Air Pollutants in Unburned Natural Gas from Residential Stoves in California. Environ. Sci. Technol. 2022, 56, 15828–15838. [Google Scholar] [CrossRef] [PubMed]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef] [PubMed]
- Alamgholiloo, H.; Asgari, E.; Sheikhmohammadi, A.; Ghasemian, N.; Hashemzadeh, B.; Nourmoradi, H. Enhancement of the catalytic performance of Co-ZIF/WO3 heterostructures for selective catalytic reduction of NOx. Sci. Rep. 2024, 14, 3277. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, X.; Wei, Z.; Wang, L.; Wang, C.; Chen, Z. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total. Environ. 2021, 766, 144319. [Google Scholar] [CrossRef]
- Panigrahi, T.H.; Sahoo, S.R.; Murmu, G.; Maity, D.; Saha, S. Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx)—A critical review. Prog. Solid State Chem. 2022, 68, 100380. [Google Scholar] [CrossRef]
- Abdalla, T.M.; Adam, M.A.; Onaizi, S.A. SO2 capture using nanostructured materials: Recent developments, challenges, and future outlooks. Surf. Interfaces 2024, 55, 105272. [Google Scholar] [CrossRef]
- Rawat, S.; Bamola, P.; Rani, C.; Kaushik, V.; Kumar, U.; Dwivedi, C.; Rattan, R.; Sharma, M.; Kumar, R.; Sharma, H. Interdigitated electrodes-based Au-MoS2 hybrid gas sensor for sensing toxic CO and NH3 gases at room temperature. Nanotechnology 2023, 34, 305601. [Google Scholar] [CrossRef]
- Khatun, R.; Rocky, M.H.; Roy, D.; Al Roman, A.; Ahmed, M.T. Ab initio study of Ti-doped C3N nanosheet as COCl2, O3, and HCN gas sensor. Comput. Theor. Chem. 2024, 1239, 114769. [Google Scholar] [CrossRef]
- Tsai, W.T. A Survey on Toxic Volatile Organic Compounds (VOCs): Toxicological Profiles, Health Exposure Risks, and Regulatory Strategies for Mitigating Emissions from Stationary Sources in Taiwan. Atmosphere 2023, 14, 242. [Google Scholar] [CrossRef]
- Pistollato, F.; Madia, F.; Corvi, R.; Munn, S.; Grignard, E.; Paini, A.; Worth, A.; Bal-Price, A.; Prieto, P.; Casati, S.; et al. Current EU Regulatory Requirements for the Assessment of Chemicals and Cosmetic Products: Challenges and Opportunities for Introducing New Approach Methodologies; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Brown, S.K.; Sim, M.R.; Abramson, M.J.; Gray, C.N. Concentrations of Volatile Organic Compounds in Indoor Air—A Review. Indoor Air 1994, 4, 123–134. [Google Scholar] [CrossRef]
- Alberts, W.M. Indoor air pollution: No, No2, CO, and CO2. J. Allergy Clin. Immunol. 1994, 94, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Chaloulakou, A.; Mavroidis, I. Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model. Atmos. Environ. 2002, 36, 1769–1781. [Google Scholar] [CrossRef]
- Schibuola, L.; Tambani, C. Indoor environmental quality classification of school environments by monitoring PM and CO2 concentration levels. Atmos. Pollut. Res. 2020, 11, 332–342. [Google Scholar] [CrossRef]
- Ozbay, G.; Jones, M.; Gadde, M.; Isah, S.; Attarwala, T. Design and Operation of Effective Landfills with Minimal Effects on the Environment and Human Health. J. Environ. Public Health 2021, 2021, 6921607. [Google Scholar] [CrossRef]
- Agache, I.; Sampath, V.; Aguilera, J.; Akdis, C.A.; Akdis, M.; Barry, M.; Bouagnon, A.; Chinthrajah, S.; Collins, W.; Dulitzki, C.; et al. Climate change and global health: A call to more research and more action. Allergy 2022, 77, 1389–1407. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, X.; Xing, H. Recent advances in the capture and abatement of toxic gases and vapors by metal-organic frameworks. Mater. Chem. Front. 2021, 5, 5970–6013. [Google Scholar] [CrossRef]
- Popescu, S.M.; Mansoor, S.; Wani, O.A.; Kumar, S.S.; Sharma, V.; Sharma, A.; Arya, V.M.; Kirkham, M.B.; Hou, D.; Bolan, N.; et al. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Front. Environ. Sci. 2024, 12, 1336088. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Wei, Y.; Xu, Y.; Chen, X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 2023, 13, 1112278. [Google Scholar] [CrossRef] [PubMed]
- Kibria, M.G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor. ACS Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, N.; Xu, J.; Jin, Q.; San, X.; Wang, X. Co3O4/In2O3 p-n heterostructures based gas sensor for efficient structure-driven trimethylamine detection. Ceram. Int. 2023, 49, 17354–17362. [Google Scholar] [CrossRef]
- Barik, P.; Pradhan, M. Selectivity in trace gas sensing: Recent developments, challenges, and future perspectives. Analyst 2022, 147, 1024–1054. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry. Sensors 2023, 23, 9548. [Google Scholar] [CrossRef]
- Hussain, S.; Wang, S.; Amu-Darko, J.N.O.; Begi, A.N.; Yusuf, K.; Ibrahim, T.K.; Iqbal, A.; Manavalan, R.K.; Zhang, X.; Qiao, G. MOF-derived La-doped ZnO dodecahedron nanostructures for efficient detection of NO2 gas. Sens. Actuators B Chem. 2024, 425, 136954. [Google Scholar] [CrossRef]
- Dennler, N.; Rastogi, S.; Fonollosa, J.; van Schaik, A.; Schmuker, M. Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks. Sens. Actuators B Chem. 2022, 361, 131668. [Google Scholar] [CrossRef]
- Li, X.H.; Li, M.Z.; Yang, X.Y.; Wang, T.Y.; Luo, Y.H.; Kandegama, W.M.W.W.; Li, J.Y.; Hao, G.F.; Liu, C.R. Ultra-sensitive, versatile and portable detection of hydrazine in eco-environmental systems using a smartphone-integrated ratiometric fluorescent sensor. J. Hazard. Mater. 2025, 492, 138172. [Google Scholar] [CrossRef]
- Bhushan, P.; Kamat, V.; Abrol, I.; Kaushik, A.; Bhansali, S. Bio-acceptability of wearable sensors: A mechanistic study towards evaluating ionic leaching induced cellular inflammation. Sci. Rep. 2022, 12, 10782. [Google Scholar] [CrossRef]
- Yun, J.; Cho, M.; Lee, K.; Kang, M.; Park, I. A review of nanostructure-based gas sensors in a power consumption perspective. Sens. Actuators B Chem. 2022, 372, 132612. [Google Scholar] [CrossRef]
- Song, P.; Wang, T. Application of Polyoxometalates in Chemiresistive Gas Sensors: A Review. ACS Sens. 2022, 7, 3634–3643. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.X.; Liu, M.Y.; Zhu, L.Y.; Zhang, D.W.; Lu, H.L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Lett. 2022, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Myung, N.V.; Tran, T.T. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Sharma, A.; Eadi, S.B.; Noothalapati, H.; Otyepka, M.; Lee, H.D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530–2577. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Cheng, Q.; Wang, L.; Wang, S. A Mini Review on the Recent Progress of MoS2-Based Gas Sensors. Catal. Lett. 2023, 154, 1375–1384. [Google Scholar] [CrossRef]
- Jiang, T.; He, Q.; Bi, M.; Chen, X.; Sun, H.; Tao, L. First-principles calculations of adsorption sensitivity of Au-doped MoS2 gas sensor to main characteristic gases in oil. J. Mater. Sci. 2021, 56, 13673–13683. [Google Scholar] [CrossRef]
- Borse, R.G.; Ingole, S.M.; Gaikwad, S.S.; Shinde, V.S.; Jadhav, G.R.; Gurule, A.C.; Dabhade, G.B.; Ghotekar, S. Insights into a low-temperature gas sensing performance of hydrothermally fabricated novel Sn-modified LaCoO3 nanostructures. J. Mater. Sci. Mater. Electron. 2025, 36, 1206. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Guo, L.; Chen, T.; Zhao, W.; Liu, X.; Wang, J.; Wang, X.; Yang, Y. Chemiresistive n-butanol gas sensors based on Au@In2O3 hollow-sphere-array thin films. Sens. Actuators B Chem. 2024, 422, 136579. [Google Scholar] [CrossRef]
- Mondal, B.; Gogoi, P.K. Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor. ACS Appl. Electron. Mater. 2022, 4, 59–86. [Google Scholar] [CrossRef]
- Bhaliya, J.D.; Shah, V.R.; Patel, G.; Deshmukh, K. Recent Advances of MOF-Based Nanoarchitectonics for Chemiresistive Gas Sensors; Springer: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Gopalan, S.; Luo, F.; Amreen, K.; Singh, R.K.; Goel, S.; Lin, Z.; Naidu, R. Review and Perspective: Gas Separation and Discrimination Technologies for Current Gas Sensors in Environmental Applications. ACS Sens. 2023, 8, 1373–1390. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, S.; Ho, H.L.; Gao, S.; Wang, Y.; Jin, W. Frequency-Division-Multiplexed Multicomponent Gas Sensing with Photothermal Spectroscopy and a Single NIR/MIR Fiber-Optic Gas Cell. Anal. Chem. 2022, 94, 13473–13480. [Google Scholar] [CrossRef]
- Huang, X.; Sun, W.; Li, Z.; Shi, J.; Zhang, N.; Zhang, Y.; Zhai, X.; Hu, X.; Zou, X. Hydrogen sulfide gas sensing toward on-site monitoring of chilled meat spoilage based on ratio-type fluorescent probe. Food Chem. 2022, 396, 133654. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Chen, J.; Xing, S.; Zheng, D.; Guo, L. Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing. J. Hazard. Mater. 2021, 416, 126195. [Google Scholar] [CrossRef] [PubMed]
- Chua, W.H.; Yaacob, M.H.; Tan, C.Y.; Ong, B.H. Chemical bath deposition of h-MoO3 on optical fibre as room-temperature ammonia gas sensor. Ceram. Int. 2021, 47, 32828–32836. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Ren, Y.; Wang, M.; Zhang, Z.; Zhao, W.; Yan, J.; Zhai, C.; Yun, J. NO gas adsorption properties of MoS2 from monolayer to trilayer: A first-principles study. Mater. Res. Express 2021, 8, 015024. [Google Scholar] [CrossRef]
- Tabata, H.; Matsuyama, H.; Goto, T.; Kubo, O.; Katayama, M. Visible-Light-Activated Response Originating from Carrier-Mobility Modulation of NO2Gas Sensors Based on MoS2 Monolayers. ACS Nano 2021, 15, 2542–2553. [Google Scholar] [CrossRef]
- Park, S.J.; Ha, T.J. MoS2 monolayers functionalized with gold nanoparticles using microwave absorption for FET-type NO2 gas sensors in ppb-levels. Appl. Surf. Sci. 2023, 622, 156959. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tissot, A.; Serre, C. Recent progress on MOF-based optical sensors for VOC sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, H.; Song, B.; Yuan, K.; Xiao, H.; Cao, Y.; Cao, Q. Metal–Organic Framework (MOF) Derivatives as Promising Chemiresistive Gas Sensing Materials: A Review. Int. J. Environ. Res. Public Health 2023, 20, 4388. [Google Scholar] [CrossRef] [PubMed]
- Kidanemariam, A.; Park, J. Metal-organic framework based on Co and 4,4′-dimethylenebiphenyl diphosphonic acid as an efficient methylene blue adsorbent. J. Ind. Eng. Chem. 2021, 104, 61–72. [Google Scholar] [CrossRef]
- Lee, J.H.; Nguyen, T.T.T.; Nguyen, L.H.T.; Phan, T.B.; Kim, S.S.; Doan, T.L.H. Functionalization of zirconium-based metal–organic frameworks for gas sensing applications. J. Hazard. Mater. 2021, 403, 124104. [Google Scholar] [CrossRef]
- Hong, M.; Jo, W.; Jo, S.A.; Jin, H.; Kim, M.; Lee, C.Y.; Park, Y.D. Enhanced Gas Sensing Characteristics of a Polythiophene Gas Sensor Blended with UiO-66 via Ligand Functionalization. Adv. Electron. Mater. 2024, 10, 2300901. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, Y.; Li, G.; Guo, J.; Zhang, J.; Zhao, Q.; Che, J.; Li, L.; Gao, J.; et al. Design engineering of MOF-derived ZnO porous nanofibers functionalized with Pt clusters: Significantly improved acetone sensing properties. Sens. Actuators B Chem. 2023, 400, 134941. [Google Scholar] [CrossRef]
- Yang, D.H.; Nguyen, T.T.T.; Navale, S.T.; Nguyen, L.H.T.; Dang, Y.T.; Mai, N.X.D.; Phan, T.B.; Kim, J.Y.; Doan, T.L.H.; Kim, S.S.; et al. Novel amine-functionalized zinc-based metal-organic framework for low-temperature chemiresistive hydrogen sensing. Sens. Actuators B Chem. 2022, 368, 132120. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Z.; Fan, Y.; Wu, Y.; An, Z.; Zhao, H.; Liu, Y.; Xu, J.; Design, M. Sensing Performance and Mechanism of Anhydrous Hydrogen Fluoride Gas Sensor Based on Amino-Functionalized MIL-101(Cr) for New Energy Vehicles. Coatings 2022, 12, 260. [Google Scholar] [CrossRef]
- Wang, X.; Kong, D.; Li, X.; Xie, K. MOF-derived hierarchical hollow Fe2O3 nanobox functionalized with Ru doping for superior H2S sensing, Colloids Surfaces A Physicochem. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 682, 132936. [Google Scholar] [CrossRef]
- Park, C.; Woo, J.; Jeon, M.; Baek, J.W.; Shin, E.; Kim, J.; Park, S.; Kim, I.D. Dual-MOF-Layered Films via Solution Shearing Approach: A Versatile Platform for Tunable Chemiresistive Sensors. ACS Nano 2025, 19, 11230–11240. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Park, C.; Jeon, M.; Lee, J.H.; Kwon, O.; Seong, S.; Kim, J.; Kim, I.D.; Moon, H.R. Interface-Sensitized Chemiresistor: Integrated Conductive and Porous Metal-Organic Frameworks. Chem. Eng. J. 2022, 449, 137780. [Google Scholar] [CrossRef]
- Hassan, M.H.; Haikal, R.R.; Hashem, T.; Rinck, J.; Koeniger, F.; Thissen, P.; Hei, S.S.; Wöll, C.; Alkordi, M.H.; Conductive, E. Electrically Conductive, Monolithic Metal–Organic Framework–Graphene (MOF@G) Composite Coatings. ACS Appl. Mater. Interfaces 2019, 11, 6442–6447. [Google Scholar] [CrossRef]
- Arul, C.; Moulaee, K.; Donato, N.; Iannazzo, D.; Lavanya, N.; Neri, G.; Sekar, C. Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sens. Actuators B Chem. 2021, 329, 129053. [Google Scholar] [CrossRef]
- Ren, X.; Xu, Z.; Liu, D.; Li, Y.; Zhang, Z.; Tang, Z. Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles. Sens. Actuators B Chem. 2022, 357, 131384. [Google Scholar] [CrossRef]
- Majhi, S.M.; Kim, J.Y.; Mirzaei, A.; Surya, S.G.; Kim, H.W.; Kim, S.S. MOF-derived SnO2 nanoparticles for realization of ultrasensitive and highly selective NO2 gas sensing. Sens. Actuators B Chem. 2024, 419, 136369. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Z.; Jia, L.; Guo, X.; Yang, R.; Deng, Q.; Zhang, D. Ultrahigh sensitive and selectivity NO2 gas sensors based on Sn-MOF derivates at low temperature. Sens. Actuators B Chem. 2024, 417, 136073. [Google Scholar] [CrossRef]
- Yang, C.R.; Cheng, P.W.; Tseng, S.F. Highly responsive and selective NO2 gas sensors based on titanium metal organic framework (Ti-MOF) with pyromellitic acid. Sens. Actuators A Phys. 2023, 354, 114301. [Google Scholar] [CrossRef]
- Bag, A.; Kumar, M.; Moon, D.B.; Hanif, A.; Sultan, M.J.; Yoon, D.H.; Lee, N.E. A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron. Sens. Actuators B Chem. 2021, 346, 130463. [Google Scholar] [CrossRef]
- Small, L.J.; Vornholt, S.M.; Percival, S.J.; Meyerson, M.L.; Schindelholz, M.E.; Chapman, K.W.; Nenoff, T.M. Impedance-Based Detection of NO2 Using Ni-MOF-74: Influence of Competitive Gas Adsorption. ACS Appl. Mater. Interfaces 2023, 15, 37675–37686. [Google Scholar] [CrossRef]
- Begi, A.N.; Hussain, S.; Amu-Darko, J.N.O.; Shah, S.; Junhao, W.; Zhang, X.; Yusuf, K.; Manavalan, R.K.; Qiao, G.; Liu, G. Low-concentration H2S gas sensors based on MOF-derived Co3O4 nanomaterials. Sens. Actuators A Phys. 2024, 378, 115776. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, L.; Kan, Z.; Lyu, J.; Wang, M.X.; Dong, B.; Bai, X.; Chang, Z.; Song, H.; Xu, L. Diverse scenarios selective perception of H2S via cobalt sensitized MOF filter membrane coated Three-Dimensional metal oxide sensor. Chem. Eng. J. 2022, 450, 138014. [Google Scholar] [CrossRef]
- Chen, X.; Liang, R.; Qin, C.; Ye, Z.; Zhu, L. Regulating Co-MOF array films to construct Co3O4 in-situ sensors for ultrasensitive and highly selective triethylamine detection. Sens. Actuators B Chem. 2022, 368, 132147. [Google Scholar] [CrossRef]
- Yan, P.; Li, X.; Ma, D.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Liang, F. A cobalt-based MOF with the synergistic effect of size sieving and multi-functional sites for selective gas adsorption. J. Solid State Chem. 2022, 316, 123566. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Lee, J.H.; Nguyen, T.B.; Le Hoang Doan, T.; Phan, B.T.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Realization of selective CO detection by Ni-incorporated metal-organic frameworks. Sens. Actuators B Chem. 2020, 315, 128110. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Zhou, T.; Zhang, T. Nanoscale MOF-74-based QCM gas sensor for CO2 detection at room temperature. Sens. Actuators B Chem. 2024, 413, 135874. [Google Scholar] [CrossRef]
- Ingle, N.; Sayyad, P.; Deshmukh, M.; Bodkhe, G.; Mahadik, M.; Al-Gahouari, T.; Shirsat, S.; Shirsat, M.D. A chemiresistive gas sensor for sensitive detection of SO2 employing Ni-MOF modified –OH-SWNTs and –OH-MWNTs. Appl. Phys. A Mater. Sci. Process. 2021, 127, 157. [Google Scholar] [CrossRef]
- López-Cervantes, V.B.; Kim, D.W.; Obeso, J.L.; Martínez-Ahumada, E.; Amador-Sánchez, Y.A.; Sánchez-González, E.; Leyva, C.; Hong, C.S.; Ibarra, I.A.; Solis-Ibarra, D. Detection of SO2 using a chemically stable Ni(ii)-MOF. Nanoscale 2023, 15, 12471–12475. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Wang, J.; Sun, Y.; Hao, X.; Niu, B.; Xie, H.; Li, C. MOFs/nanofiber-based capacitive gas sensors for the highly selective and sensitive sensing of trace SO2. Appl. Surf. Sci. 2023, 613, 155772. [Google Scholar] [CrossRef]
- Brandt, P.; Nuhnen, A.; Öztürk, S.; Kurt, G.; Liang, J.; Janiak, C. Comparative Evaluation of Different MOF and Non-MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low-Pressure Uptake. Adv. Sustain. Syst. 2021, 5, 2000285. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhang, X.X.; Zhang, W.Y. Sulfur dioxide sensing properties of MOF-derived ZnFe2O4 functionalized with reduced graphene oxide at room temperature. Rare Met. 2021, 40, 1604–1613. [Google Scholar] [CrossRef]
- Carrasco, S.; Martínez, M.L.; Amador-Sánchez, Y.A.; Cervantes, V.B.L.; Sánchez-González, E.; Portillo-Vélez, N.S.; Peralta, R.A.; Celaya, C.A.; Guzmán-Vargas, A.; Horcajada, P.; et al. (Hf)PCN-224(Co) as an efficient ppm-level sensor for toxic SO2. Mater. Today Adv. 2025, 26, 100579. [Google Scholar] [CrossRef]
- Ren, Y.B.; Xu, H.Y.; Gang, S.Q.; Gao, Y.J.; Jing, X.; Du, J.L. An ultra-stable Zr(IV)-MOF for highly efficient capture of SO2 from SO2/CO2 and SO2/CH4 mixtures. Chem. Eng. J. 2022, 431, 134057. [Google Scholar] [CrossRef]
- López-Olvera, A.; Zárate, J.A.; Martínez-Ahumada, E.; Fan, D.; Díaz-Ramírez, M.L.; Sáenz-Cavazos, P.A.; Martis, V.; Williams, D.R.; Sánchez-González, E.; Maurin, G.; et al. SO2 Capture by Two Aluminum-Based MOFs: Rigid-like MIL-53(Al)-TDC versus Breathing MIL-53(Al)-BDC. ACS Appl. Mater. Interfaces 2021, 13, 39363–39370. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Wang, J.; Li, H.; Sun, Y.; Hao, X.; Qin, Y.; Niu, B.; Li, C. Washable and flexible gas sensor based on UiO-66-NH2 nanofibers membrane for highly detecting SO2. Chem. Eng. J. 2022, 428, 131720. [Google Scholar] [CrossRef]
- Obeso, J.L.; Martínez-Ahumada, E.; López-Olvera, A.; Ortiz-Landeros, J.; Lara-García, H.A.; Balmaseda, J.; López-Morales, S.; Sánchez-González, E.; Solis-Ibarra, D.; Leyva, C.; et al. MOF-303 as an Effective Adsorbent to Clean CH4: SO2 Capture and Detection. ACS Appl. Energy Mater. 2023, 6, 9084–9091. [Google Scholar] [CrossRef]
- Hu, L.; Hu, M.; Zhang, M.; Wang, W.; Jiang, L.; Wu, W.; Lin, D.; Yang, K. A novel amino-functionalized Bio-MOF for trace SO2 adsorption under dry and humid conditions. Sep. Purif. Technol. 2025, 376, 133798. [Google Scholar] [CrossRef]
- Qin, P.; Day, B.A.; Okur, S.; Li, C.; Chandresh, A.; Wilmer, C.E.; Heinke, L. VOC Mixture Sensing with a MOF Film Sensor Array: Detection and Discrimination of Xylene Isomers and Their Ternary Blends. ACS Sens. 2022, 7, 1666–1675. [Google Scholar] [CrossRef]
- Mousavi, S.; Zeinali, S. VOC s detection using resistive gas nanosensor based on MIL-101(Cr) as a metal organic framework. Sens. Actuators A Phys. 2022, 346, 113810. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, H.; Hu, J.; Rong, X.; Zhang, W.; Wang, Y.; Li, S.; Li, G.; Wang, D. Facile engineering of metal–organic framework derived SnO2@NiO core–shell nanocomposites based gas sensor toward superior VOCs sensing performance. Chem. Eng. J. 2024, 501, 157692. [Google Scholar] [CrossRef]
- Wang, S.; Pirzada, T.; Xie, W.; Barbieri, E.; Hossain, O.; Opperman, C.H.; Pal, L.; Wei, Q.; Parsons, G.N.; Khan, S.A. Creating hierarchically porous banana paper-metal organic framework (MOF) composites with multifunctionality. Appl. Mater. Today 2022, 28, 101517. [Google Scholar] [CrossRef]
- Gao, L.; Kou, D.; Ma, W.; Zhang, S. Biomimetic Metal-Organic Framework-Based Photonic Crystal Sensor for Highly Sensitive Visual Detection and Effective Discrimination of Benzene Vapor. ACS Appl. Mater. Interfaces 2023, 15, 30606–30618. [Google Scholar] [CrossRef]
- Ma, X.; Wu, J.; Jiang, L.; Wang, M.; Deng, G.; Qu, S.; Chen, K. On-chip integration of a metal-organic framework nanomaterial on a SiO2waveguide for sensitive VOC sensing. Lab Chip 2021, 21, 3298–3306. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, S.; Liu, Z.; Li, J.R.; Huang, J.H.; Jiang, Z.; Ou, W.; Liao, W.M.; Lu, J.; He, J. MOF-based colorimetric sensor for rapid and visual readout of trace acetylene. J. Mater. Chem. A 2023, 11, 10577–10583. [Google Scholar] [CrossRef]
- Feng, L.; Musto, C.J.; Kemling, J.W.; Lim, S.H.; Suslick, K.S. A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chem. Commun. 2010, 46, 2037–2039. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, J.; Zhao, Y.; Sun, C.; Li, W.; Chang, Z. A robust Eu-MOF as a multi-functional fluorescence sensor for detection of benzaldehyde, Hg2+, and Cr2O72-/CrO42-. Microchem. J. 2024, 196, 109712. [Google Scholar] [CrossRef]
- López-Cervantes, V.B.; López-Olvera, A.; Obeso, J.L.; Torres, I.K.; Martínez-Ahumada, E.; Carmona-Monroy, P.; Sánchez-González, E.; Solís-Ibarra, D.; Lima, E.; Jangodaz, E.; et al. Robust Co(II)-Based Metal-Organic Framework for the Efficient Uptake and Selective Detection of SO2. Chem. Mater. 2024, 36, 2735–2742. [Google Scholar] [CrossRef]
- Jing, C.; Wang, Y.; Song, X.; Li, X.; Kou, M.; Zhang, G.; Dou, W.; Liu, W. Dual-Fluorophore and Dual-Site Multifunctional Fluorescence Sensor for Visualizing the Metabolic Process of GHS to SO2 and the SO2 Toxicological Mechanism by Two-Photon Imaging. Anal. Chem. 2023, 95, 1376–1384. [Google Scholar] [CrossRef]
- Peng, H.; Kong, S.; Deng, X.; Deng, Q.; Qi, F.; Liu, C.; Tang, R. Development of a Ratiometric Fluorescent Probe with Zero Cross-Talk for the Detection of SO2 Derivatives in Foods and Live Cells. J. Agric. Food Chem. 2023, 71, 14322–14329. [Google Scholar] [CrossRef]
- Obeso, J.L.; López-Cervantes, V.B.; Flores, C.V.; Martínez, A.; Amador-Sánchez, Y.A.; Portillo-Velez, N.S.; Lara-García, H.A.; Leyva, C.; Solis-Ibarra, D.; Peralta, R.A. CYCU-3: An Al(iii)-based MOF for SO2 capture and detection. Dalt. Trans. 2024, 53, 4790–4796. [Google Scholar] [CrossRef]
- Zhao, W.; Obeso, J.L.; López-Cervantes, V.B.; Bahri, M.; Sánchez-González, E.; Amador-Sánchez, Y.A.; Ren, J.; Browning, N.D.; Peralta, R.A.; Barcaro, G.; et al. Achieving Sub-ppm Sensitivity in SO 2 Detection with a Chemically Stable Covalent Organic Framework. Angew. Chemie 2025, 137, e202415088. [Google Scholar] [CrossRef]
- Che, S.; Shou, Q.; Fan, Y.; Peng, X.; Zhou, C.S.; Fu, H.; She, Y. Fluorescent Ionic Liquid Membranes Based on Coumarin for the Real-Time and Visual Detection of Gaseous SO2. ACS Sustain. Chem. Eng. 2022, 10, 2784–2792. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, T.; Yang, X.; Wang, R.; Wang, K.; Liu, X.; Wang, X.; Jin, Q. Innovative SIFSIX-1-Cu-based microwave sensor with directionally ordered interconnected nanochannels: Revolutionizing high-performance SO2 detection. J. Hazard. Mater. 2025, 496, 139517. [Google Scholar] [CrossRef]
- Deng, S.; Liu, J.; Han, D.; Yang, X.; Liu, H.; Zhang, C.; Blecker, C. Synchronous fluorescence detection of nitrite in meat products based on dual-emitting dye@MOF and its portable hydrogel test kit. J. Hazard. Mater. 2024, 463, 132898. [Google Scholar] [CrossRef] [PubMed]
- Kajal, N.; Gautam, S. Efficient nitro-aromatic sensor via highly luminescent Zn-based metal-organic frameworks: Nitro-aromatic sensor via Zn-based metal-organic frameworks. Chem. Eng. J. Adv. 2022, 11, 100348. [Google Scholar] [CrossRef]
- Hurlock, M.J.; Christian, M.S.; Small, L.J.; Percival, S.J.; Rademacher, D.X.; Schindelholz, M.E.; Nenoff, T.M. Exceptional Electrical Detection of Trace NO2 via Mixed Metal MOF-on-MOF Film-Based Sensors. ACS Appl. Mater. Interfaces 2024, 16, 63818–63830. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, E.; Liu, F.; Li, H.; Xia, T. Growth of robust metal-organic framework films by spontaneous oxidation of a metal substrate for NO2 sensing. Mater. Chem. Front. 2021, 5, 6476–6484. [Google Scholar] [CrossRef]
- Mandal, W.; Majumder, D.; Fajal, S.; Let, S.; Shirolkar, M.M.; Ghosh, S.K. Post engineering of a chemically stable MOF for selective and sensitive sensing of nitric oxide. Mol. Syst. Des. Eng. 2023, 8, 756–766. [Google Scholar] [CrossRef]
- Xu, R.; Sun, B.; Ji, W.; Sun, J.; Li, P.; Ren, Z.; Jing, L. Construction of a CoNiHHTP MOF/PHI Z-Scheme Heterojunction for ppb Level NO2 Photoelectric Sensing with 405 nm Irradiation at RT. ACS Sensors 2024, 9, 3187–3197. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Gao, Y.; Sun, X.; Kong, R.M.; Xia, L.; Qu, F. Metal-organic framework-based ratiometric point-of-care testing for quantitative visual detection of nitrite. J. Hazard. Mater. 2024, 469, 134021. [Google Scholar] [CrossRef] [PubMed]
- Ambaye, A.D.; Muchindu, M.; Jijana, A.; Mishra, S.; Nxumalo, E. Screen-printed electrode system based on carbon black/copper-organic framework hybrid nanocomposites for the electrochemical detection of nitrite. Mater. Today Commun. 2023, 35, 105567. [Google Scholar] [CrossRef]
- Zaimbashi, R.; Salarizadeh, N.; Askari, M.B. Electrochemical Oxidation of Glutathione in the Presence of Tryptophan at Carbon Paste Electrode Modified with Ni-Zn-Metal-Organic Frameworks/Graphene Oxide and Ferrocene Derivative. J. Electrochem. Soc. 2024, 171, 107518. [Google Scholar] [CrossRef]
- Feng, Y.; Luan, S.; Yi, J.; Zhang, Y.; Li, X.; Lv, S.; Cong, Y. A novel electrochemical sensor for simultaneous determination of 2,4-dichlorophenol and 3-chlorophenol. Environ. Sci. Nano 2024, 11, 4348–4358. [Google Scholar] [CrossRef]
- Dey, B.; Sarkhel, G.; Choudhury, A. Facile synthesis of copper MOF/carbon nanofiber nanocomposite paper for electrochemical detection of toxic 4-nitrophenol. J. Macromol. Sci. Part A 2023, 60, 150–160. [Google Scholar] [CrossRef]
- Guan, H.; Chen, Y.; Xing, K.; Liu, Q. Electrochemical sensor based on Fe3O4@Au/MOF-P2W17V composite modified glassy carbon electrode for food nitrite detection. J. Food Compos. Anal. 2024, 136, 106792. [Google Scholar] [CrossRef]
- More, M.S.; Bodkhe, G.A.; Singh, F.; Kim, M.; Shirsat, M.D. Metal–organic framework-reduced graphene oxide (Zn-BDC@rGO) composite for selective discrimination among ammonia, carbon monoxide, and sulfur dioxide. Appl. Phys. A Mater. Sci. Process. 2023, 129, 828. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Chang, Y.; Gao, Y.; Wang, F.; Li, H.; French, P.J.; Lee, Y.K.; Akbar, S.A.; Siddiqui, A.M.U.; et al. NO Detection on Exposed Fe-N4 Sites Deposited on Nanometer-Sized Cu-Hemin MOFs Coated on Reduced Graphene Oxide at Room Temperature. ACS Appl. Nano Mater. 2025, 8, 6943–6954. [Google Scholar] [CrossRef]
- Yang, C.R.; Huang, J.G.; Huang, M.J.; Shen, H.Y.; Tseng, S.F. High-performance NO2 gas sensors based on vanadium metal organic frameworks (V-MOFs) on flexible graphene electrodes. J. Alloys Compd. 2024, 1008, 2–11. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Chen, Z.; Chen, J.; Hu, Y.; Zhu, J.J. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. J. Hazard. Mater. 2021, 416, 125895. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xue, Y.; Yu, Z.; Huang, F.; Jin, Y. Layered 2D MOF nanosheets grown on CNTs substrates for efficient nitrite sensing. Mater. Today Chem. 2023, 30, 101490. [Google Scholar] [CrossRef]
- Hassan, K.; Tran, A.T.T.; Jalil, M.A.; Tung, T.T.; Nine, M.J.; Losic, D. Machine Learning-Enhanced Chemiresistive Sensors for Ultra-Sensitive Detection of Methanol Adulteration in Alcoholic Beverages. ACS Sens. 2025, 10, 3931–3940. [Google Scholar] [CrossRef]
- More, M.S.; Bodkhe, G.A.; Singh, F.; Dole, B.N.; Tsai, M.L.; Hianik, T.; Shirsat, M.D. Hydrogen sulfide chemiresistive sensor based on swift heavy ion irradiated cerium-based metal–organic framework/graphene oxide composite. Synth. Met. 2024, 306, 117622. [Google Scholar] [CrossRef]
- Zeng, W.; Luo, S.; Rong, D.; Li, Y.; Fei, Y.; Zhao, M.; Huang, L. The NH4+ Electrochemical Sensor with the 3D-2D Electron Transfer Channel Based on ZIF-8/rGO Composite Frameworks. J. Phys. Chem. C 2025, 129, 1138–1148. [Google Scholar] [CrossRef]
- Ali, A.; Alzamly, A.; Greish, Y.E.; Bakiro, M.; Nguyen, H.L.; Mahmoud, S.T. A highly sensitive and flexible metal-organic framework polymer-based H2S gas sensor. ACS Omega 2021, 6, 17690–17697. [Google Scholar] [CrossRef]
- Ali, A.; Altakroori, H.H.D.; Greish, Y.E.; Alzamly, A.; Siddig, L.A.; Qamhieh, N.; Mahmoud, S.T. Flexible Cu3(HHTP)2 MOF Membranes for Gas Sensing Application at Room Temperature. Nanomaterials 2022, 12, 913. [Google Scholar] [CrossRef]
- Ahmadipour, M.; Peterson, G.W.; Montazami, R. Smart Textile: Functionalization and Electrohydrodynamic-Jet Printing of UiO-66-NH2 Metal-Organic Frameworks for Gas-Sensing Applications. ACS Appl. Mater. Interfaces 2025, 17, 31118–31132. [Google Scholar] [CrossRef] [PubMed]
- Hizam, S.M.M.; Saheed, M.S.M. Facile Electrochemical Approach Based on Hydrogen-Bonded MOFs-Derived Tungsten Ethoxide/Polypyrrole-Reduced GO Nanocrystal for ppb Level Ammonium Ions Detection. Chemosensors 2023, 11, 201. [Google Scholar] [CrossRef]
- Huang, B.; Li, Y.; Zeng, W. Application of metal-organic framework-based composites for gas sensing and effects of synthesis strategies on gas-sensitive performance. Chemosensors 2021, 9, 226. [Google Scholar] [CrossRef]
- Maji, B.; Dash, P. Investigation into the enhanced gas sensing performance for CH4: Comparative study of MOF-derived and traditionally synthesized ZnCo2O4 flower based composite. Sens. Actuators B Chem. 2024, 403, 135182. [Google Scholar] [CrossRef]
- Sahoo, S.J.; Das, A.; Maji, B.; Goutam, U.K.; Dash, P. Effect of a Ni-Substituted Cu-MOF Precursor toward Efficient NO2 Gas Detection: A Comprehensive Comparative Gas-Sensing Study of MOF-Derived and Traditionally Synthesized CuO/NiO-Based Nanocomposites. ACS Appl. Electron. Mater. 2024, 6, 2349–2368. [Google Scholar] [CrossRef]
- Xue, S.; Cao, S.; Huang, Z.; Yang, D.; Zhang, G. Improving gas-sensing performance based on mos nanomaterials: A review. Materials 2021, 14, 4263. [Google Scholar] [CrossRef]
- Veríssimo, M.I.S. A critical review of the analytical performance of the most recent MOS-based gas sensors for indoor air quality monitoring of WHO priority pollutants. TrAC—Trends Anal. Chem. 2024, 178, 117813. [Google Scholar] [CrossRef]
- Zeama, M.; Alhaji, A.; Serre, C.; Shekhah, O.; Eddaoudi, M. A Metal–Organic Framework Based Gas Sensor for Real-Time Formaldehyde Detection: Metal(III/IV) Pyrazole Carboxylates as a Case Study. Chem. Mater. 2025, 37, 6193–6202. [Google Scholar] [CrossRef]
- Sharma, A.; Karuppasamy, K.; Vikraman, D.; Cho, Y.; Adaikalam, K.; Korvink, J.G.; Kim, H.S.; Sharma, B. Metal Organic Framework-Derived ZnO@GC Nanoarchitecture as an Effective Hydrogen Gas Sensor with Improved Selectivity and Gas Response. ACS Appl. Mater. Interfaces 2022, 14, 44516–44526. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Han, L.; Li, X.; Xu, Y. Hierarchical kiwifruit-like ZnO/ZnFe2O4 heterostructure for high-sensitive triethylamine gaseous sensor. Sens. Actuators B Chem. 2021, 344, 130251. [Google Scholar] [CrossRef]
- He, Z.; Hu, J.; Zhong, J.; Long, Y.; Shen, J.; Chen, S.; Ou, W.; Liu, Q.; Lu, J.; Lou, Z. Plasmonic MOF for Highly Selective SERS Sensing of Trace Mercury (II) in Complex Matrices. Small 2025, 21, 2409988. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, X.; Wen, J.; Guo, S.; Duan, X.; Zhang, X.M. Integration of Plasmonic materials with MOFs/MOF-derived materials for Photocatalysis. Coord. Chem. Rev. 2024, 518, 216113. [Google Scholar] [CrossRef]
- Phan-Quang, G.C.; Yang, N.; Lee, H.K.; Sim, H.Y.F.; Koh, C.S.L.; Kao, Y.C.; Wong, Z.C.; Tan, E.K.M.; Miao, Y.E.; Fan, W.; et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced raman scattering platform for stand-off and real-time atmospheric monitoring. ACS Nano 2019, 13, 12090–12099. [Google Scholar] [CrossRef]
- Zheng, G.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M. Plasmonic metal-organic frameworks. SmartMat 2021, 2, 446–465. [Google Scholar] [CrossRef]
- Lafuente, M.; De Marchi, S.; Urbiztondo, M.; Pastoriza-Santos, I.; Pérez-Juste, I.; Santamaría, J.; Mallada, R.; Pina, M. Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air. ACS Sens. 2021, 6, 2241–2251. [Google Scholar] [CrossRef]
- Koh, C.S.L.; Sim, H.Y.F.; Leong, S.X.; Boong, S.K.; Chong, C.; Ling, X.Y. Plasmonic Nanoparticle-Metal-Organic Framework (NP-MOF) Nanohybrid Platforms for Emerging Plasmonic Applications. ACS Mater. Lett. 2021, 3, 557–573. [Google Scholar] [CrossRef]
- Praveenchandar, J.; Vetrithangam, D.; Kaliappan, S.; Karthick, M.; Pegada, N.K.; Patil, P.P.; Rao, S.G.; Umar, S. IoT-Based Harmful Toxic Gases Monitoring and Fault Detection on the Sensor Dataset Using Deep Learning Techniques. Sci. Program. 2022, 2022, 7516328. [Google Scholar] [CrossRef]
- Narkhede, P.; Walambe, R.; Mandaokar, S.; Chandel, P.; Kotecha, K.; Ghinea, G. Gas detection and identification using multimodal artificial intelligence based sensor fusion. Appl. Syst. Innov. 2021, 4, 3. [Google Scholar] [CrossRef]
- Hou, L.; Xu, X.; Zhong, Z.; Tian, F.; Wang, L.; Xu, Y. Bimetallic MOF-Based Sensor for Highly Sensitive Detection of Ammonia Gases. ACS Appl. Mater. Interfaces 2024, 16, 13191–13201. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Q.; Liu, X.; Li, S.; Li, H. Ultrasensitive detection of hazardous gas at room temperature enabled by MOF@MXene 0D-2D heterostructure. J. Hazard. Mater. 2024, 480, 136261. [Google Scholar] [CrossRef]
- Amu-Darko, J.N.O.; Hussain, S.; Agyekum, E.A.; Begi, A.N.; Shah, S.; Yusuf, K.; Manavalan, R.K.; Qiao, G.; Liu, G. Low-Temperature NO2 Gas-Sensing System Based on Metal-Organic Framework-Derived In2O3 Structures and Advanced Machine Learning Techniques. Inorg. Chem. 2024, 63, 16429–16441. [Google Scholar] [CrossRef]
- Mumtaz, F.; Zhang, B.; Subramaniyam, N.; Roman, M.; Holtmann, P.; Hungund, A.P.; O’Malley, R.; Spudich, T.M.; Davis, M.; Gerald, R.E.; et al. Miniature Optical Fiber Fabry-Perot Interferometer Based on a Single-Crystal Metal-Organic Framework for the Detection and Quantification of Benzene and Ethanol at Low Concentrations in Nitrogen Gas. ACS Appl. Mater. Interfaces 2024, 16, 13071–13081. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Bing, Y.; Cao, S.; Jiang, H.; Xu, X.; Zhou, T.; Zhang, T. MEMS gas sensor based on ZnCu-based oxide semiconductors for H 2 S detection. IEEE Electron Device Lett. 2025, 46, 1845–1848. [Google Scholar] [CrossRef]
- Amu-Darko, J.N.O.; Hussain, S.; Zhang, X.; Alothman, A.A.; Ouladsmane, M.; Nazir, M.T.; Qiao, G.; Liu, G. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor. Chemosphere 2023, 314, 137670. [Google Scholar] [CrossRef]
- Li, M.; He, X.; Wu, C.; Wang, L.; Zhang, X.; Gong, X.; Zeng, X.; Huang, Y. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films. ACS Sens. 2024, 9, 979–987. [Google Scholar] [CrossRef]
- Jang, Y.W.; Jo, J.W.; Park, S.K.; Kim, J. Room-temperature gas sensors based on low-dimensional nanomaterials. J. Mater. Chem. C 2024, 12, 18609–18627. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, C.; Zhao, K.; Shao, T.; Chen, R.; Pan, Y.; Liu, Z.; Pan, X. A self-powered flexible sensor based on thermoelectric generation for NO2 gas detection. Int. J. Green Energy 2023, 20, 1776–1784. [Google Scholar] [CrossRef]
- Machín, A. Next-Generation Chemical Sensors: The Convergence of Nanomaterials, Advanced Characterization, and Real-World Applications. Chemosensors 2025, 13, 345. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R. Development of Gas Sensors and Their Applications in Health Safety, Medical Detection, and Diagnosis. Chemosensors 2025, 13, 190. [Google Scholar] [CrossRef]
- Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241. [Google Scholar] [CrossRef]
- Ulybyshev, D.; Yilmaz, I.; Northern, B.; Kholodilo, V.; Rogers, M. Trustworthy Data Analysis and Sensor Data Protection in Cyber-Physical Systems, SAT-CPS 2021—Proc. 2021 ACM Work. Secur. Trust. Cyber-Physical Syst. 2021, 13–22. [Google Scholar] [CrossRef]
- Iqbal, Z.; Zaidi, A.A.; Javed, M.; Xin, L. Progress in the Application of MOF-based SERS Sensors in Biomedicine. Res. J. Adv. Eng. Sci. 2024, 9, 128–144. [Google Scholar]
- Dwivedi, A.K.; Kar, N.B.; Shivhare, A. Cyber Security Threat Modeling of IoT Security Design Patterns. In Proceedings of the 2025 International Conference on Intelligent and Cloud Computing, Bhubaneswar, India, 2–3 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Akram, W.; Iqbal, S.; Abbas, Z.; Mansoor, S.; Shah, I. Metal Organic Framework based Humidity Sensing: Stability, performance, and IoT Integration. J. Sci. Adv. Mater. Devices 2025, 100972. [Google Scholar] [CrossRef]
- Yin, W.; Huang, L.; Wang, X.; Yin, W. Research on Intelligent Agricultural Environment Monitoring System Based on LoRa and NB-IoT Technology. In Proceedings of the 2024 4th Asian Conference on Innovation in Technology, Pimari Chinchwad, India, 23–25 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Ouyang, Q.; Rong, Y.; Xia, G.; Chen, Q.; Ma, Y.; Liu, Z. Integrating Humidity-Resistant and Colorimetric COF-on-MOF Sensors with Artificial Intelligence Assisted Data Analysis for Visualization of Volatile Organic Compounds Sensing. Adv. Sci. 2025, 12, 2411621. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Guo, H.; Wang, M.; Peng, L.; Ren, B.; Ma, Y.; Yang, W. Deep machine learning-assisted MOF@COF fluorescence/colorimetric dual-mode intelligent ratiometric sensing platform for sensitive glutathione detection. Talanta 2025, 292, 127990. [Google Scholar] [CrossRef] [PubMed]












| Pollutant/VOC | Common Source | Health Impact | Maximum Indoor Air Concentration | Guideline |
|---|---|---|---|---|
| Formaldehyde | Furniture, building materials | Irritation, carcinogenic | 0.1 mg/m3 (WHO, 30 min avg) | WHO (2010) |
| Benzene | Paints, tobacco smoke | Carcinogenic | 5 µg/m3 (EU Directive 2000/69/EC) | EU |
| Toluene | Adhesives, solvents | Nervous system effects | 260 µg/m3 (WHO, 1-week avg) | WHO |
| CO | Incomplete combustion | Headache, dizziness | 10 mg/m3 (8 h avg, WHO) | WHO |
| NO2 | Gas stoves, heaters | Respiratory irritation | 200 µg/m3 (1 h avg, WHO) | WHO |
| O3 | Photochemical reactions | Lung irritation | 100 µg/m3 (8 h avg, WHO) | WHO |
| Total VOCs | Various indoor sources | Eye/nose irritation | <300 µg/m3 (recommended) | ISO 16000-6 |
| Gas | Primary Sources | Health Impacts | Environmental Impacts | MOF/Sensor | Notes | Ref. |
|---|---|---|---|---|---|---|
| NOx | Vehicles, industrial facilities, power plants | Respiratory issues, worsened asthma, cardiovascular problems | Acid rain, smog, soil and water acidification, vegetation stress, ecosystem imbalance | La-doped ZnO porous nanocages encapsulated in MOF | Fast response 28 s; detection limit 5.68 ppb NO2; stable under humidity; high selectivity | [46] |
| SO2 | Fossil fuel combustion, industrial operations, power generation | Respiratory irritation | Forms acid rain; damages soil, water, forests, crops; alters aquatic ecosystems | MOFs for selective SO2 adsorption | Potential for trapping industrial SO2; improves environmental mitigation | [47] |
| CO | Industrial emissions, vehicles, biomass burning | Interferences with oxygen transport; acute poisoning risk | Affects ecosystems; partially mitigated by microbial CO oxidation | MOFs for CO adsorption | Enhances detection sensitivity and selectivity; can operate in varying humidity | [48] |
| O3 | Photochemical reactions between NOx and VOCs | Lung and eye irritation | Damages vegetation; contributes to smog and acid rain | – | Sensor platforms required for fast detection in outdoor air | [49] |
| VOCs | Industrial activities, chemical processing, stationary sources | Respiratory issues, neurological effects, cancer risk | Air pollution, smog, ecosystem imbalance | MOF-based fluorescent/ratiometric sensors | Can detect benzene, formaldehyde, vinyl chloride, 1,3-butadiene; portable and selective | [50] |
| NH3 | Fertilizer application, livestock management | – | Contributes to ecosystem imbalance | MOFs for NH3 adsorption | Enhances gas capture and monitoring in agricultural settings | [57] |
| N2H4 | Industrial chemical processes | Highly toxic, environmental hazard | Pollutants in water, soil, and air | DIPOT ratiometric fluorescent sensor | Detection limit 4.5 nM; visible fluorescence shift; portable smartphone-read test strips; validated in 20 samples | [68] |
| Materials | Target Analyte Gas | Method | LOD (ppb) | Linear Range (ppb) | Ref. |
|---|---|---|---|---|---|
| UiO-66–NH2/P3HT hybrid film | NO2 | Resistive | 1 × 10−6 | – | [94] |
| NH2–MIL-101(Cr)/QCM | HF | QCM | 500 | – | [97] |
| ZnFe2O4/rGO (MOF-derived) | NO2 | Resistive | 0.149 | 50–4000 | [107] |
| Co3O4 nanosheets (MOF-derived) | H2S | Resistive | 500 | 500–100,000 | [109] |
| Co-doped ZnO/ZIF hybrid | H2S | Resistive | 70 | – | [110] |
| (Hf)PCN-224(Co) | SO2 | Photoluminescence | 175,500 | – | [120] |
| UiO-66-NH2 nanofibers/CNT | SO2 | Capacitive | 1000 | 1000–125,000 | [123] |
| MOF-e-nose (array of MOFs on QCM) | VOC (xylene) | QCM | 1000 | 100,000 | [126] |
| MUF-16 | SO2 | Fluorescence quenching | 80,720 | - | [135] |
| SIFSIX-1-Cu | SO2 | Microwave dielectric sensing | 8.9 | 10–1,000,000 | [141] |
| Rh6G@UiO-66-NH2 | NO2− | Ratiometric fluorescence | 0.966 | 46–4600 | [142] |
| Ni–Mg MOF-74 films | NO2 | Impedance | 1000 | - | [144] |
| PABA@MOF-808 | NO | Fluorescence quenching | 21 | - | [146] |
| CoNiHHTP MOF/PHI heterojunction | NO2 | Optoelectronic | 1 | - | [147] |
| Ru@MOF-NH2 | NO2− | Ratiometric fluorescence + smartphone readout | 27.6 | - | [148] |
| Sensor Material | Strengths | Limitations | MOF-Based Advantage | Notes |
|---|---|---|---|---|
| Metal Oxide Semiconductors (MOS) | Robust, low-cost, sensitive | Robust, low-cost, sensitive | Robust, low-cost, sensitive | Robust, low-cost, sensitive |
| Electrochemical Sensors | Compact, low-cost, portable | Compact, low-cost, portable | Compact, low-cost, portable | Compact, low-cost, portable |
| Optical Sensors | High precision, stable baseline | High precision, stable baseline | High precision, stable baseline | High precision, stable baseline |
| Carbon Nanomaterials (Graphene, CNTs) | High surface area, conductivity, functionalization | High surface area, conductivity, functionalization | High surface area, conductivity, functionalization | High surface area, conductivity, functionalization |
| Conductive Polymers | Low-cost, flexible, tunable doping | Low-cost, flexible, tunable doping | Low-cost, flexible, tunable doping | Low-cost, flexible, tunable doping |
| MOF-Based Hybrids | Ambient operation, tunable, multi-gas selectivity | Ambient operation, tunable, multi-gas selectivity | Ambient operation, tunable, multi-gas selectivity | Ambient operation, tunable, multi-gas selectivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kidanemariam, A.; Cho, S. Advanced Metal–Organic Framework-Based Sensor Systems for Gas and Environmental Monitoring: From Material Design to Embedded Applications. Sensors 2025, 25, 6539. https://doi.org/10.3390/s25216539
Kidanemariam A, Cho S. Advanced Metal–Organic Framework-Based Sensor Systems for Gas and Environmental Monitoring: From Material Design to Embedded Applications. Sensors. 2025; 25(21):6539. https://doi.org/10.3390/s25216539
Chicago/Turabian StyleKidanemariam, Alemayehu, and Sungbo Cho. 2025. "Advanced Metal–Organic Framework-Based Sensor Systems for Gas and Environmental Monitoring: From Material Design to Embedded Applications" Sensors 25, no. 21: 6539. https://doi.org/10.3390/s25216539
APA StyleKidanemariam, A., & Cho, S. (2025). Advanced Metal–Organic Framework-Based Sensor Systems for Gas and Environmental Monitoring: From Material Design to Embedded Applications. Sensors, 25(21), 6539. https://doi.org/10.3390/s25216539

