Sequential Injection Analysis of Cholesterol Using an Oxidation–Reduction Electrode Detector
Abstract
1. Introduction
2. Experimental
2.1. Reagents
2.2. SIA System
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Ni, Y.; Kokot, S. Electrochemical Cholesterol Sensor Based on Cholesterol Oxidase and MoS2-AuNPs Modified Glassy Carbon Electrode. Sens. Actuators B 2016, 233, 100–106. [Google Scholar] [CrossRef]
- Li, L.-H.; Dutkiewicz, E.P.; Huang, Y.-C.; Zhou, H.-B.; Hsu, C.-C. Analytical Methods for Cholesterol Quantification. J. Food Drug Anal. 2019, 27, 375–386. [Google Scholar] [CrossRef]
- Zhou, Z.; Zong, J.; Xu, N. Review of methods for the determination of cellular cholesterol content: Principles, advantages, limitations, applications and perspectives. Anal. Sci. 2025, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Eom, K.S.; Lee, Y.J.; Seo, H.W.; Kang, J.Y.; Shim, J.S.; Lee, S.H. Sensitive and Non-Invasive Cholesterol Determination in Saliva via Optimization of Enzyme Loading and Platinum Nano-Cluster Composition. Analyst 2020, 145, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Eksin, E.; Senturk, H.; Erdem, A. Cost-Effective Cholesterol Monitoring by Enzyme-Based Electrochemical Assay. ChemistrySelect 2024, 9, e202304593. [Google Scholar] [CrossRef]
- Bokoch, M.P.; Devadoss, A.; Palencsar, M.S.; Burgess, J.D. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes. Anal. Chim. Acta 2004, 519, 47–55. [Google Scholar] [CrossRef]
- Sun, G.; Wei, X.; Zhang, D.; Huang, L.; Liu, H.; Fang, H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. Biosensors 2023, 13, 886. [Google Scholar] [CrossRef]
- Salazar, P.; Martín, M.; González-Mora, J.L. In situ electrodeposition of cholesterol oxidase-modified polydopamine thin film on nanostructured screen printed electrodes for free cholesterol determination. J. Electroanal. Chem. 2019, 837, 191–199. [Google Scholar] [CrossRef]
- Wisitsoraat, A.; Sritongkham, P.; Karuwan, C.; Phokharatkul, D.; Maturos, T.; Tuantranont, A. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens. Bioelectron. 2010, 26, 1514–1520. [Google Scholar] [CrossRef]
- Salimi, A.; Hallaj, R.; Soltanian, S. Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis 2009, 21, 2693–2700. [Google Scholar] [CrossRef]
- García-Ruiz, E.; Vidal, J.C.; Aramendía, M.T.; Castillo, J.R. Design of an interference-free cholesterol amperometric biosensor based on the electrosynthesis of polymeric films of diaminonaphthalene isomers. Electroanalysis 2004, 16, 497–504. [Google Scholar] [CrossRef]
- Vidal, J.C.; Garcia-Ruiz, E.; Castillo, J.R. Strategies for the improvement of an amperometric cholesterol biosensor based on electropolymerization in flow systems: Use of charge-transfer mediators and platinization of the electrode. J. Pharm. Biomed. Anal. 2000, 24, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Satomura, M.; Nakahara, T. Amperometric flow-injection determination of glucose, urate and cholesterol and blood serum by using some immobilized enzyme reactors and a poly(1,2-diaminobenzene)-coated platinum electrode. Anal. Chim. Acta 1994, 296, 271–276. [Google Scholar] [CrossRef]
- Carpenter, A.; Purdy, W.C. The Determination of Total Serum Cholesterol by Flowinjection Analysis with Amperometric Detection. Anal. Lett. 1990, 23, 425–435. [Google Scholar] [CrossRef]
- Moody, G.J.; Sanghera, G.S.; Thomas, J.D.R. Factors concerning the design and calibration of an amperometric enzyme electrode system for the flow injection analysis of cholesterol. Analyst 1988, 113, 1419–1422. [Google Scholar] [CrossRef]
- Solich, P.; Polasek, M.; Klimundova, J.; Ruzicka, J. Sequential Injection Technique Applied to Pharmaceutical Analysis. TrAC Trends Anal. Chem. 2004, 23, 116–126. [Google Scholar] [CrossRef]
- Perez-Olmos, R.; Soto, J.C.; Zarate, N.; Araújo, A.N.; Montenegro, M.C.B.S.M. Sequential Injection Analysis Using Electrochemical Detection: A review. Anal. Chim. Acta 2005, 554, 1–16. [Google Scholar] [CrossRef]
- Biocic, M.; Kraljević, T.; Spassov, T.G.; Kukoc-Modun, L.; Kolev, S.D. Sequential Injection Analysis Method for the Determination of Glutathione in Pharmaceuticals. Sensors 2024, 24, 5677. [Google Scholar] [CrossRef]
- Tambaru, D.; Nagul, E.A.; Almeida, M.I.G.S.; Kolev, S.D. Development of a sequential injection analysis method for the automatic speciation of inorganic selenium in water samples. Microchem. J. 2024, 201, 110688. [Google Scholar] [CrossRef]
- Masadome, T.; Arai, H. Sequential injection analysis of anionic surfactants using on-line preconcentration technique and a microfluidic polymer chip with an embedded ion-selective electrode as a detector. Electrochemistry 2018, 86, 122–127. [Google Scholar] [CrossRef]
- Zhang, R.; Nakajima, H.; Soh, N.; Nakano, K.; Masadome, T.; Nagata, K.; Sakamoto, K.; Imato, T. Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads. Anal. Chim. Acta 2007, 600, 105–113. [Google Scholar] [CrossRef]
- Barbosa, J.S.; Passos, M.L.C.; Korn, M.d.G.A.; Saraiva, M.; Lúcia, M.F.S. Enzymatic Reactions in a Lab-on-Valve System: Cholesterol Evaluations. Molecules 2019, 24, 2890. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Masadome, T. Determination of Lactate by Sequential Injection Analysis Using a Fluoride Ion-Selective Electrode Detector. Electrochemistry 2020, 88, 522–524. [Google Scholar] [CrossRef]
- Koizumi, N.; Nishiyama, R.; Masadome, T. Sequential Injection Analysis of Butyrylcholinesterase Using Butyrylcholine Ion-Selective Elec trode Detector. Electrochemistry 2022, 90, 097003. [Google Scholar] [CrossRef]
- Situmorang, M.; Alexander, P.W.; Hibbert, D.B. Flow Injection Potentiometry for Enzymatic Assay of Cholesterol with a Tungsten Electrode Sensor. Talanta 1999, 49, 639–649. [Google Scholar] [CrossRef]
- Shaidarova, L.G.; Chelnokova, I.A.; Gafiatova, I.A.; Gedmina, A.V.; Budnikov, H.C. Sequential-Injection Amperometric Determination of Glucose, Insulin, Cholesterol, and Uric Acid on Electrodes Modified by Nickel and Cobalt Particles. J. Anal. Chem. 2020, 75, 1218–1226. [Google Scholar] [CrossRef]
Step | Position of SV | Volume (µL) | Flow Rate (µL/mL) | Event |
---|---|---|---|---|
1 | 1 | 937 | 29 | Aspiration of carrier solution |
2 | 4–8 | 125 | 29 | Aspiration of serum sample solution |
3 | 9 | 500 | 29 | Disposal of the sample as effluent with the carrier solution |
4 | 2 | 125 | 29 | Aspiration of reagent 1 into HC |
5 | 3 | 125 | 29 | Aspiration of reagent 2 into HC |
6 | 4–8 | 125 | 29 | Aspiration of serum sample solution into HC |
7 | 1 | 1312 | 29 | Repetition of the propulsion of the solution in HC to the detector side, then returning to HC. |
8 | - | - | 0 | Stopping the flow between Port 1 and the PP convergence point |
9 | 1 | 1312 | 29 | Aspiration of the reaction product obtained (K3[Fe(CN)6]) into HC and propulsion to the detector along with the carrier solution and measurement |
Flow System | Electrochemical Detector | Determination Range and LOD | References |
---|---|---|---|
FIA | Amperometry | 5–100/100–400 µM | [8] |
FIA | Amperometry | 1.25–10 mM | [9] |
FIA | Amperometry | 10–40 µM | [10] |
FIA | Amperometry | Up to 0.3 mM LOD: 95 µM | [11] |
FIA | Amperometry | Up to 0.3 or 0.4 mM | [12] |
FIA | Amperometry | 0.6–5 mM LOD: 0.022 mM | [13] |
FIA | Amperometry | Up to 31 mmol/L LOD: 2.6 µM | [14] |
FIA | Amperometry | Up to 1.035 mM LOD: 10 µM | [15] |
FIA | Potentiometry | 0.05–3.0 mM LOD: 0.01 mM | [25] |
SIA | Amperometry | 5–5000/0.5–5000 µM | [26] |
SIA | Potentiometry | 0.01–1.0 mM LOD: 9 µM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imanaka, T.; Masadome, T. Sequential Injection Analysis of Cholesterol Using an Oxidation–Reduction Electrode Detector. Sensors 2025, 25, 5863. https://doi.org/10.3390/s25185863
Imanaka T, Masadome T. Sequential Injection Analysis of Cholesterol Using an Oxidation–Reduction Electrode Detector. Sensors. 2025; 25(18):5863. https://doi.org/10.3390/s25185863
Chicago/Turabian StyleImanaka, Takato, and Takashi Masadome. 2025. "Sequential Injection Analysis of Cholesterol Using an Oxidation–Reduction Electrode Detector" Sensors 25, no. 18: 5863. https://doi.org/10.3390/s25185863
APA StyleImanaka, T., & Masadome, T. (2025). Sequential Injection Analysis of Cholesterol Using an Oxidation–Reduction Electrode Detector. Sensors, 25(18), 5863. https://doi.org/10.3390/s25185863