A Quadrotor UAV Aeromagnetic Compensation Method Based on Time–Frequency Joint Representation Neural Network and Its Application in Mineral Exploration
Abstract
1. Introduction
2. Materials and Methods
2.1. Traditional Aeromagnetic Compensation Model
2.2. Continuous Wavelet Transform
2.3. Bi-LSTM
3. Results
3.1. UAV Compensation Flight
3.2. Experiment a: Verification of Correlation Between Frequency Features and Maneuvering Actions
3.3. Experiment b: Bi-LSTM Network Compensation Method Combining Time and Frequency
4. Line Flight Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, M.; Samson, C.; Wood, A.; Cook, I. Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada. Pure Appl. Geophys. 2018, 175, 3145–3158. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets. Geophys. Prospect. 2020, 68, 334–349. [Google Scholar] [CrossRef]
- Parshin, A.V.; Morozov, V.A.; Blinov, A.V.; Kosterev, A.N.; Budyak, A.E. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spat. Inf. Sci. 2018, 21, 67–74. [Google Scholar] [CrossRef]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Tolles, W.E.; Lawson, J.D. Magnetic Compensation of MAD Equipped Aircraft; Airborne Instruments Laboratory: Mineola, NY, USA, 1950; pp. 201–211. [Google Scholar]
- Leliak, P. Identification and Evaluation of Magnetic-Field Sources of Magnetic Airborne Detector Equipped Aircraft. IRE Trans. Aeronaut. Navig. Electron. 1961, ANE-8, 95–105. [Google Scholar] [CrossRef]
- Bickel, S.H. Small Signal Compensation of Magnetic Fields Resulting from Aircraft Maneuvers. IEEE Trans. Aerosp. Electron. Syst. 1979, AES-15, 518–525. [Google Scholar] [CrossRef]
- Leach, B.W. Aeromagnetic Compensation as a Linear Regression Problem. In Information Linkage Between Applied Mathematics and Industry; Academic Press: Cambridge, MA, USA, 1980; pp. 139–161. [Google Scholar]
- Praga-Alejo, R.J.; Torres-Trevino, L.M.; Pina-Monarrez, M.R. Optimal Determination of K Constant of Ridge Regression Using a Simple Genetic Algorithm. In Proceedings of the 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA ’08), Cuernavaca, Mexico, 30 September–3 October 2008; pp. 39–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.X.; Chang, S. An Aeromagnetic Compensation Algorithm for Aircraft Based on Fuzzy Adaptive Kalman Filter. J. Appl. Math. 2014, 2014, 405671. [Google Scholar] [CrossRef]
- Dou, Z.J.; Ren, K.X.; Han, Q.; Niu, X.M. A Novel Real-Time Aeromagnetic Compensation Method Based on RLSQ. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 27–29 August 2014. [Google Scholar] [CrossRef]
- Williams, P.M. Aeromagnetic compensation using neural networks. Neural Comput. Appl. 1993, 1, 207–214. [Google Scholar] [CrossRef]
- Ma, M.; Cheng, D.F.; Chalup, S.; Zhou, Z.J. Uncertainty Estimation in the Neural Model for Aeromagnetic Compensation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1942–1946. [Google Scholar] [CrossRef]
- Wu, P.L.; Zhang, Q.Y. Aeromagnetic compensation algorithm based on principal component analysis. J. Sens. 2018, 2018, 7. [Google Scholar] [CrossRef]
- Ren, K.X. Research on Magnetic Interference Compensation and Simulation Technology for Aviation Platforms; Harbin Institute of Technology: Harbin, China, 2016. [Google Scholar]
- Inaba, T.; Shima, A.; Konishi, M. Magnetic noise compensation using FIR model parameter estimation method. Electron. Commun. Jpn. 2002, 85, 1–11. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, X.C.; Jiao, J. Fast Processing Method of Aeromagnetic Compensation Basedon Fluxgate Estimation. J. Jilin Univ. 2019, 49, 857–864. [Google Scholar]
- Zhang, D.K. Analysis of Aeromagnetic Swing Noise and Corresponding Compensation Method. IEEE Trans. Geosci. Remote Sens. 2021, 60, 2001910. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, X.; Jiao, J. An Aeromagnetic Compensation Algorithm Based on a Deep Autoencoder. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6001305. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, X.; Jiao, J.; Jia, J.; Zhou, S. An improved neural network method for aeromagnetic compensation. Meas. Sci. Technol. 2021, 32, 045106. [Google Scholar] [CrossRef]
- Chen, Z.; Lou, Y.; He, P.; Xu, P.; Zhang, X. Magnetic Anomaly Detection Based on Attention-Bi-LSTM Network. IEEE Trans. Instrum. Meas. 2024, 73, 2520011. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q.; Zhan, D.; Li, Q. A Data-Driven OBE Magnetic Interference Compensation Method. Sensors 2022, 22, 7732. [Google Scholar] [CrossRef]
- Xu, X.; Huang, L.; Liu, X. Deep MAD: Deep Learning for Magnetic Anomaly Detection and Denoising. IEEE Access 2020, 99, 121257–121266. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, C.; Su, Z. An Aeromagnetic Compensation Algorithm Based on Radial Basis Function Artificial Neural Network. Appl. Sci. 2022, 13, 136. [Google Scholar] [CrossRef]
- Gamey, T.J.; Doll, W.E.; Beard, L.P.; Bell, D.T. Analysis of Correlated Noise in Airborne Magnetic Gradients for Unexploded Ordnance Detection. J. Environ. Eng. Geophys. 2004, 9, 115. [Google Scholar] [CrossRef]
- Dou, Z.J.; Han, Q.; Niu, X.M.; Peng, X.; Guo, H. An Adaptive Filter for Aeromagnetic Compensation Based on Wavelet Multiresolution Analysis. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1069–1073. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. Characterizing electromagnetic interference signals for unmanned aerial vehicle geophysical surveys. Geophysics 2021, 86, J21–J32. [Google Scholar] [CrossRef]
- Xiong, J.-J.; Guo, N.-H.; Hong, Y.-X.; Zheng, E.-H. Improved Position and Attitude Tracking Control for a Quadrotor UAV. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 4197–4201. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, Q.D.; Frimmel, H.E.; Wang, Y.B.; Guo, W.K.; Sun, G.T.; Zhou, T.C.; Li, J.P. Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 2018, 102, 313–337. [Google Scholar] [CrossRef]
- Noriega, G. Aeromagnetic Compensation in Gradiometry–Performance, Model Stability, and Robustness. IEEE Geosci. Remote Sens. Lett. 2015, 12, 117–121. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Q.; Zheng, Y.; Qu, X.; Wu, F.; Fang, G. An Improved Aeromagnetic Compensation Method Robust to Geomagnetic Gradient. Appl. Sci. 2022, 12, 1490. [Google Scholar] [CrossRef]
Methods | IR | ||
---|---|---|---|
Butterworth filter | 6.059 | 0.729 | 8.311 |
Wavelet filter | 6.002 | 1.009 | |
Least Square | 1.042 | 5.813 | |
Ridge Regression | 0.947 | 6.398 | |
LSTM | 0.358 | 15.557 | |
Bi-LSTM | 0.296 | 19.229 | |
Bi-FT | 0.257 | 22.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Huang, G.; Jiao, J.; Zhou, L.; Zhao, Y.; Lu, P.; Li, L.; Shi, S. A Quadrotor UAV Aeromagnetic Compensation Method Based on Time–Frequency Joint Representation Neural Network and Its Application in Mineral Exploration. Sensors 2025, 25, 5774. https://doi.org/10.3390/s25185774
Yu P, Huang G, Jiao J, Zhou L, Zhao Y, Lu P, Li L, Shi S. A Quadrotor UAV Aeromagnetic Compensation Method Based on Time–Frequency Joint Representation Neural Network and Its Application in Mineral Exploration. Sensors. 2025; 25(18):5774. https://doi.org/10.3390/s25185774
Chicago/Turabian StyleYu, Ping, Guanlin Huang, Jian Jiao, Longran Zhou, Yuzhuo Zhao, Pengyu Lu, Lu Li, and Shuiyan Shi. 2025. "A Quadrotor UAV Aeromagnetic Compensation Method Based on Time–Frequency Joint Representation Neural Network and Its Application in Mineral Exploration" Sensors 25, no. 18: 5774. https://doi.org/10.3390/s25185774
APA StyleYu, P., Huang, G., Jiao, J., Zhou, L., Zhao, Y., Lu, P., Li, L., & Shi, S. (2025). A Quadrotor UAV Aeromagnetic Compensation Method Based on Time–Frequency Joint Representation Neural Network and Its Application in Mineral Exploration. Sensors, 25(18), 5774. https://doi.org/10.3390/s25185774