Comparison of Wearable and Depth-Sensing Technologies with Electronic Walkway for Comprehensive Gait Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Recruitment
2.2. Study Design
2.3. Recording Tools
2.3.1. Pressure-Sensitive Gait Mat
2.3.2. Wearable Sensors Systems
2.3.3. Depth Camera
2.4. Synchronization Setup
2.5. Setup and Procedure
2.6. Gait Marker Extraction
2.6.1. HS/TO Detection with APDM Foot IMUs
2.6.2. HS/TO Detection with APDM Lumbar IMU
2.6.3. HS/TO Detection with Azure Kinect
2.6.4. Calculation of Gait Markers
2.7. Evaluation and Statistical Analysis
3. Results
3.1. Overall Agreement Between Sensing Technologies and Zeno™ Walkway
3.2. Macro-Level Gait Marker Agreement Across Technologies
3.3. Micro-Temporal Gait Marker Agreement Across Technologies
3.4. Micro-Spatial Gait Marker Agreement Across Technologies
3.5. Micro-Spatiotemporal Gait Marker Agreement Across Technologies
3.6. Correlation vs. Mean Absolute Error Percentage Analysis
4. Discussion
4.1. Main Findings
4.2. Comparison with Previous Studies
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Better, M.A. Alzheimer’s disease facts and figures. Alzheimers Dement. 2023, 19, 1598–1695. [Google Scholar]
- Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-living gait characteristics in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length. J. Neuroeng. Rehabil. 2016, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sharafian, M.E.; Ellis, C.; Sidaway, B.; Hayes, M.; Hejrati, B. The effects of real-time haptic feedback on gait and cognitive load in older adults. IEEE Trans. Neural Syst. Rehabil. Eng. 2025, 33, 2335–2344. [Google Scholar] [CrossRef]
- Richardson, J.K.; Thies, S.B.; DeMott, T.K.; Ashton-Miller, J.A. Gait analysis in a challenging environment differentiates between fallers and nonfallers among older patients with peripheral neuropathy. Arch. Phys. Med. Rehabil. 2005, 86, 1539–1544. [Google Scholar] [CrossRef]
- Hulleck, A.A.; Menoth Mohan, D.; Abdallah, N.; El Rich, M.; Khalaf, K. Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies. Front. Med Technol. 2022, 4, 901331. [Google Scholar] [CrossRef]
- Lord, S.; Halligan, P.; Wade, D. Visual gait analysis: The development of a clinical assessment and scale. Clin. Rehabil. 1998, 12, 107–119. [Google Scholar] [CrossRef]
- Ghoreishi, S.G.A.; Boateng, C.; Moshfeghi, S.; Jan, M.T.; Conniff, J.; Yang, K.; Jang, J.; Furht, B.; Newman, D.; Tappen, R.; et al. Quad-tree Based Driver Classification using Deep Learning for Mild Cognitive Impairment Detection. IEEE Access 2025, 13, 63129–63142. [Google Scholar] [CrossRef] [PubMed]
- Kvist, A.; Tinmark, F.; Bezuidenhout, L.; Reimeringer, M.; Conradsson, D.M.; Franzén, E. Validation of algorithms for calculating spatiotemporal gait parameters during continuous turning using lumbar and foot mounted inertial measurement units. J. Biomech. 2024, 162, 111907. [Google Scholar] [CrossRef]
- Bilney, B.; Morris, M.; Webster, K. Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003, 17, 68–74. [Google Scholar] [CrossRef]
- Seifallahi, M.; Soltanizadeh, H.; Hassani Mehraban, A.; Khamseh, F. Alzheimer’s disease detection using skeleton data recorded with Kinect camera. Clust. Comput. 2020, 23, 1469–1481. [Google Scholar] [CrossRef]
- Nassajpour, M.; Shuqair, M.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E.; Ghoraani, B. Objective estimation of m-CTSIB balance test scores using wearable sensors and machine learning. Front. Digit. Health 2024, 6, 1366176. [Google Scholar] [CrossRef] [PubMed]
- Nassajpour, M.; Shuqair, M.; Rosenfeld, D.A.; Tolea, M.I.; Galvin, J.E.; Ghoraani, B. Integrating Wearable Sensor Technology and Machine Learning for Objective m-CTSIB Balance Score Estimation. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15–19 July 2024; pp. 1–4. [Google Scholar]
- Nassajpour, M.; Shuqair, M.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E.; Ghoraani, B. Smartphone-Based Balance Assessment Using Machine Learning. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15–19 July 2024; pp. 1–4. [Google Scholar]
- Khaniki, M.; Mirzaeibonehkhater, M.; Fard, S. Class Imbalance-Aware Active Learning with Vision Transformers in Federated Histopathological Imaging. J. Med. Med. Stud. 2025, 1, 65–73. [Google Scholar]
- Moore, S.A.; Hickey, A.; Lord, S.; Del Din, S.; Godfrey, A.; Rochester, L. Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: A feasibility, validity and reliability study. J. Neuroeng. Rehabil. 2017, 14, 130. [Google Scholar] [CrossRef]
- Buckley, C.; Micó-Amigo, M.E.; Dunne-Willows, M.; Godfrey, A.; Hickey, A.; Lord, S.; Rochester, L.; Del Din, S.; Moore, S.A. Gait asymmetry post-stroke: Determining valid and reliable methods using a single accelerometer located on the trunk. Sensors 2019, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Muthukrishnan, N.; Abbas, J.J.; Krishnamurthi, N. A wearable sensor system to measure step-based gait parameters for parkinson’s disease rehabilitation. Sensors 2020, 20, 6417. [Google Scholar] [CrossRef]
- Lanotte, F.; Shin, S.Y.; O’Brien, M.K.; Jayaraman, A. Validity and reliability of a commercial wearable sensor system for measuring spatiotemporal gait parameters in a post-stroke population: The effects of walking speed and asymmetry. Physiol. Meas. 2023, 44, 085005. [Google Scholar] [CrossRef]
- Jacobs, D.; Farid, L.; Ferré, S.; Herraez, K.; Gracies, J.M.; Hutin, E. Evaluation of the validity and reliability of connected insoles to measure gait parameters in healthy adults. Sensors 2021, 21, 6543. [Google Scholar] [CrossRef]
- Rudisch, J.; Jöllenbeck, T.; Vogt, L.; Cordes, T.; Klotzbier, T.J.; Vogel, O.; Wollesen, B. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture 2021, 85, 55–64. [Google Scholar] [CrossRef]
- Psaltos, D.; Chappie, K.; Karahanoglu, F.I.; Chasse, R.; Demanuele, C.; Kelekar, A.; Zhang, H.; Marquez, V.; Kangarloo, T.; Patel, S.; et al. Multimodal wearable sensors to measure gait and voice. Digit. Biomarkers 2020, 3, 133–144. [Google Scholar] [CrossRef]
- Dolatabadi, E.; Taati, B.; Mihailidis, A. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Med. Eng. Phys. 2016, 38, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Arizpe-Gómez, P.; Harms, K.; Janitzky, K.; Witt, K.; Hein, A. Towards automated self-administered motor status assessment: Validation of a depth camera system for gait feature analysis. Biomed. Signal Process. Control 2024, 87, 105352. [Google Scholar] [CrossRef]
- Clark, R.A.; Bower, K.J.; Mentiplay, B.F.; Paterson, K.; Pua, Y.H. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J. Biomech. 2013, 46, 2722–2725. [Google Scholar] [CrossRef]
- Guess, T.M.; Bliss, R.; Hall, J.B.; Kiselica, A.M. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture. Gait Posture 2022, 96, 130–136. [Google Scholar] [CrossRef]
- Albert, J.A.; Owolabi, V.; Gebel, A.; Brahms, C.M.; Granacher, U.; Arnrich, B. Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study. Sensors 2020, 20, 5104. [Google Scholar] [CrossRef] [PubMed]
- Steinert, A.; Sattler, I.; Otte, K.; Röhling, H.; Mansow-Model, S.; Müller-Werdan, U. Using new camera-based technologies for gait analysis in older adults in comparison to the established GAITRite system. Sensors 2019, 20, 125. [Google Scholar] [CrossRef] [PubMed]
- Seifallahi, M.; Galvin, J.E.; Ghoraani, B. Curve walking reveals more gait impairments in older adults with mild cognitive impairment than straight walking: A Kinect camera-based study. J. Alzheimer’s Dis. Rep. 2024, 8, 423–435. [Google Scholar] [CrossRef]
- Bang, C.; Bogdanovic, N.; Deutsch, G.; Marques, O. Machine learning for the diagnosis of Parkinson’s disease using speech analysis: A systematic review. Int. J. Speech Technol. 2023, 26, 991–998. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, S.; Zhang, H.; Sun, H.; Hu, J. Gait parameters and peripheral neuropathy in patients with diabetes: A meta-analysis. Front. Endocrinol. 2022, 13, 891356. [Google Scholar] [CrossRef]
- Esser, P.; Collett, J.; Maynard, K.; Steins, D.; Hillier, A.; Buckingham, J.; Tan, G.D.; King, L.; Dawes, H. Single sensor gait analysis to detect diabetic peripheral neuropathy: A proof of principle study. Diabetes Metab. J. 2018, 42, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Brognara, L.; Arceri, A.; Zironi, M.; Traina, F.; Faldini, C.; Mazzotti, A. Gait Spatio-Temporal Parameters Vary Significantly Between Indoor, Outdoor and Different Surfaces. Sensors 2025, 25, 1314. [Google Scholar] [CrossRef]
- Cheng, Z.; Wen, Y.; Xie, Z.; Zhang, M.; Feng, Q.; Wang, Y.; Liu, D.; Cao, Y.; Mao, Y. A multi-sensor coupled supramolecular elastomer empowers intelligent monitoring of human gait and arch health. Chem. Eng. J. 2025, 504, 158760. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT-based smart healthcare applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, T.; Zhu, M.; Sun, Z.; Shi, Q.; Zhu, J.; Dong, B.; Yuce, M.R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flex. Electron. 2020, 4, 29. [Google Scholar] [CrossRef]
- Besser, L.M.; Chrisphonte, S.; Kleiman, M.J.; O’Shea, D.; Rosenfeld, A.; Tolea, M.; Galvin, J.E. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. PLoS ONE 2023, 18, e0293634. [Google Scholar] [CrossRef] [PubMed]
- Ghoraani, B.; Boettcher, L.N.; Hssayeni, M.D.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E. Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control 2021, 64, 102249. [Google Scholar] [CrossRef]
- Greenfield, J.; Guichard, R.; Kubiak, R.; Blandeau, M. Concurrent validity of Protokinetics movement analysis software for estimated centre of mass displacement and velocity during walking. Gait Posture 2025, 115, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Romeo, L.; Marani, R.; Malosio, M.; Perri, A.G.; D’Orazio, T. Performance analysis of body tracking with the microsoft azure kinect. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 572–577. [Google Scholar]
- Fraccaro, P.; Coyle, L.; Doyle, J.; O’Sullivan, D. Real-world gyroscope-based gait event detection and gait feature extraction. In Proceedings of the Sixth International Conference on eHealth, Telemedicine, and Social Medicine, Barcelona, Spain, 24–27 March 2014. [Google Scholar]
- Pham, M.H.; Elshehabi, M.; Haertner, L.; Del Din, S.; Srulijes, K.; Heger, T.; Synofzik, M.; Hobert, M.A.; Faber, G.S.; Hansen, C.; et al. Validation of a step detection algorithm during straight walking and turning in patients with Parkinson’s disease and older adults using an inertial measurement unit at the lower back. Front. Neurol. 2017, 8, 457. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Rochester, L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: Toward clinical and at home use. IEEE J. Biomed. Health Inform. 2015, 20, 838–847. [Google Scholar] [CrossRef]
- Seifallahi, M.; Galvin, J.E.; Ghoraani, B. Detection of mild cognitive impairment using various types of gait tests and machine learning. Front. Neurol. 2024, 15, 1354092. [Google Scholar] [CrossRef]
- Ma, M.; Proffitt, R.; Skubic, M. Validation of a Kinect V2 based rehabilitation game. PLoS ONE 2018, 13, e0202338. [Google Scholar] [CrossRef]
- Weinberg, H. Using the ADXL202 in Pedometer and Personal Navigation Applications; Analog Devices AN-602 Application Note; Technical Report; Analog Devices, Inc.: Norwood, MA, USA, 2002; Volume 2, pp. 1–6. [Google Scholar]
- Sabatini, A.M.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 2005, 52, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Ceyhan, B.; LaMar, J.; Nategh, P.; Neghabi, M.; Konjalwar, S.; Rodriguez, P.; Hahn, M.K.; Blakely, R.D.; Ranji, M. Optical imaging reveals liver metabolic perturbations in Mblac1 knockout mice. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar]
- Horak, F.B.; Mancini, M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef]
- Chan, W.L.; Pin, T.W. Reliability, validity and minimal detectable change of 2-minute walk test, 6-minute walk test and 10-meter walk test in frail older adults with dementia. Exp. Gerontol. 2019, 115, 9–18. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Chang, Y.; Cheng, S.J.; Shaw, J.S.; Lee, C.Y.; Chen, P.H. Do cognitive performance and physical function differ between individuals with motoric cognitive risk syndrome and those with mild cognitive impairment? BMC Geriatr. 2021, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Windham, B.G.; Parker, S.B.; Zhu, X.; Gabriel, K.P.; Palta, P.; Sullivan, K.J.; Parker, K.G.; Knopman, D.S.; Gottesman, R.F.; Griswold, M.E.; et al. Endurance and gait speed relationships with mild cognitive impairment and dementia. Alzheimer’S Dement. Diagn. Assess. Dis. Monit. 2022, 14, e12281. [Google Scholar] [CrossRef] [PubMed]
Variable | All Participants (n = 20) | Included in Analysis (n = 18) |
---|---|---|
Sex (Female/Male) | 12/8 | 10/8 |
Age (years) | ||
Height (m) | ||
Weight (kg) | ||
BMI (kg/m2) | ||
Leg Length (m) | ||
MoCA Score |
Gait Marker | Formula | |
---|---|---|
Temporal Gait Markers | ||
Applied to all Technologies | Step Time | |
Stride Time | ||
Stance Time | ||
Swing Time | ||
Single Support Time | ||
Initial Double Support Time (DST) | ||
Terminal Double Support Time (DST) | ||
Double Support Time | ||
Spatial Gait Markers | ||
Foot Sensors | Step Length | , where and are the maximum and minimum vertical acceleration values during one step. |
Stride Length | , applied over one stride. | |
Lumbar Sensor | Step Length | (inverted pendulum model), where l is foot length and h is vertical displacement during the step [42]. |
Stride Length | ||
Azure Kinect | Step Length | |
Stride Length |
Gait Marker | Zeno™ | Foot | Zeno™—Foot | Lumbar | Zeno™—Lumbar | Kinect | Zeno™—Kinect |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | MAE (Mean ± SD) | Mean ± SD | MAE (Mean ± SD) | Mean ± SD | MAE (Mean ± SD) | |
Single-Task | |||||||
Velocity (cm/s) | |||||||
Cadence (steps/min) | |||||||
Step time (s) | |||||||
Stride time (s) | |||||||
Stance time (s) | |||||||
Swing time (s) | |||||||
Single support time (s) | |||||||
Double support time (s) | |||||||
Step length (cm) | |||||||
Stride length (cm) | |||||||
Stride velocity (cm/s) | |||||||
Dual-Task | |||||||
Velocity (cm/s) | |||||||
Cadence (steps/min) | |||||||
Step time (s) | |||||||
Stride time (s) | |||||||
Stance time (s) | |||||||
Swing time (s) | |||||||
Single support time (s) | |||||||
Double support time (s) | |||||||
Step length (cm) | |||||||
Stride length (cm) | |||||||
Stride velocity (cm/s) |
Single-Task | Dual-Task | |||||
---|---|---|---|---|---|---|
Gait Marker | Zeno™—Foot | Zeno™—Lumbar | Zeno™—Kinect | Zeno™—Foot | Zeno™—Lumbar | Zeno™—Kinect |
(p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | |
Velocity (cm/s) | 0.99 (p < 0.001) | 0.93 (p < 0.001) | 0.85 (p < 0.001) | 0.99 (p < 0.001) | 0.95 (p < 0.001) | 0.97 (p < 0.001) |
Cadence (steps/min) | 1 (p < 0.001) | 0.92 (p < 0.001) | 0.94 (p < 0.001) | 1 (p < 0.001) | 0.93 (p < 0.001) | 0.95 (p < 0.001) |
Step time (s) | 1 (p < 0.001) | 1 (p < 0.001) | 0.92 (p < 0.001) | 1 (p < 0.001) | 1 (p < 0.001) | 0.94 (p < 0.001) |
Stride time (s) | 1 (p < 0.001) | 1 (p < 0.001) | 0.88 (p < 0.001) | 1 (p < 0.001) | 1 (p < 0.001) | 0.90 (p < 0.001) |
Stance time (s) | 0.99 (p < 0.001) | 0.58 (p = 0.010) | 0.80 (p = 0.007) | 0.99 (p < 0.001) | 0.52 (p = 0.020) | 0.89 (p < 0.001) |
Swing time (s) | 0.96 (p < 0.001) | 0.20 (p = 0.400) | 0.91 (p < 0.001) | 0.97 (p = 0.026) | 0.12 (p = 0.630) | 0.70 (p = 0.016) |
Single support time (s) | 0.96 (p < 0.001) | 0.20 (p = 0.400) | 0.68 (p = 0.025) | 0.97 (p < 0.001) | 0.12 (p = 0.630) | 0.70 (p = 0.001) |
Double support time (s) | 0.98 (p < 0.001) | 0.54 (p = 0.020) | 0.82 (p = 0.003) | 0.96 (p < 0.001) | 0.34 (p = 0.150) | 0.83 (p = 0.001) |
Step length (cm) | 0.92 (p < 0.001) | 0.84 (p < 0.001) | 0.92 (p < 0.001) | 0.85 (p < 0.001) | 0.89 (p < 0.001) | 0.92 (p < 0.001) |
Stride length (cm) | 0.92 (p < 0.001) | 0.83 (p < 0.001) | 0.90 (p < 0.001) | 0.84 (p < 0.001) | 0.88 (p < 0.001) | 0.96 (p < 0.001) |
Stride velocity (cm/s) | 0.96 (p < 0.001) | 0.92 (p < 0.001) | 0.98 (p < 0.001) | 0.93 (p < 0.001) | 0.93 (p < 0.001) | 0.98 (p < 0.001) |
Study | # Subjects | Sensor Technology | Gold Standard | Task Condition | Gait Markers r(n) |
---|---|---|---|---|---|
Clark et al., 2013 [24] | 21 | Kinect | Vicon | Single-Task | Step time, Step length, Gait speed, Stride time, Stride length, Foot swing velocity (6) |
Dolatabadi et al., 2016 [22] | 20 | Kinect v2 | GAITRite | Single-Task Dual-Task | Stance time, Step time, Step length, Velocity (4) |
Moore et al., 2017 [15] | 25 | AX3 IMU | GAITRite | Single-Task | Step velocity, Step length, Step time, Swing time, Stance time (5) |
Psaltos et al., 2019 [21] | 40 | Pressure insoles iPhone 8 Plus | GAITRite | Single-Task | Stance time, Swing time, Step time, Double support, Step length, Stride velocity, Stride time, Stride length (8) |
Buckley et al., 2019 [16] | 25 | AX3 IMU | GAITRite | Single-Task | Step length, Step time, Cadence, Gait speed (4) |
Steinert et al., 2019 [27] | 44 | Kinect v2 LG Nexus 5 | GAITRite | Single-Task | Step time, Swing time, Stance time, Step length (4) |
Muthukrishnan et al., 2020 [17] | 15 | APDM IMU | GAITRite | Single-Task | Step length, Step time (2) |
Albert et al., 2020 [26] | 5 | Kinect v2 Azure Kinect | Vicon | Single-Task | Step length, Step time, Step width, Stride time (4) |
Jacobs et al., 2021 [19] | 25 | FeetMe® insoles | GAITRite | Single-Task | Stride length, Stride velocity, Stance time, Swing time, Cadence (5) |
Rudisch et al., 2021 [20] | 12 | Physilog®5 APDM IMU | GAITRite | Single-Task | Stance time, Swing time, Step time, Step length, Stride velocity, Stride time, Double support, Stride length (8) |
Guess et al., 2022 [25] | 20 | Azure Kinect | Vicon | Single-Task | Stride length, Stride time, Step width, Step length (4) |
Lanotte et al., 2023 [18] | 26 | APDM IMU | GAITRite | Single-Task | Gait cycle, Cadence, Double support, Step time, Gait speed, Stride length, Stance time, Swing time, Single support (9) |
Arizpe-Gómez et al., 2023 [23] | 24 | Azure Kinect | GAITRite | Single-Task | Step length, Cadence, Velocity (3) |
Our Study | 20 | APDM IMU Azure Kinect | Zeno™ Walkway | Single-Task Dual-Task | Velocity, Cadence, Step time, Stride time, Stance time, Swing time, Single support time, Double support time, Step length, Stride length, Stride velocity (11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassajpour, M.; Seifallahi, M.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E.; Ghoraani, B. Comparison of Wearable and Depth-Sensing Technologies with Electronic Walkway for Comprehensive Gait Analysis. Sensors 2025, 25, 5501. https://doi.org/10.3390/s25175501
Nassajpour M, Seifallahi M, Rosenfeld A, Tolea MI, Galvin JE, Ghoraani B. Comparison of Wearable and Depth-Sensing Technologies with Electronic Walkway for Comprehensive Gait Analysis. Sensors. 2025; 25(17):5501. https://doi.org/10.3390/s25175501
Chicago/Turabian StyleNassajpour, Marjan, Mahmoud Seifallahi, Amie Rosenfeld, Magdalena I. Tolea, James E. Galvin, and Behnaz Ghoraani. 2025. "Comparison of Wearable and Depth-Sensing Technologies with Electronic Walkway for Comprehensive Gait Analysis" Sensors 25, no. 17: 5501. https://doi.org/10.3390/s25175501
APA StyleNassajpour, M., Seifallahi, M., Rosenfeld, A., Tolea, M. I., Galvin, J. E., & Ghoraani, B. (2025). Comparison of Wearable and Depth-Sensing Technologies with Electronic Walkway for Comprehensive Gait Analysis. Sensors, 25(17), 5501. https://doi.org/10.3390/s25175501