Prediction of Germline BRCA Mutations in High-Risk Breast Cancer Patients Using Machine Learning with Multiparametric Breast MRI Features
Abstract
Highlights
- Non-invasive machine learning model using multiparametric breast MRI (mpMRI) predicts BRCA mutations.
- Key MRI features were CAD-derived washout ≥ 19.5%, minimal/mild background parenchymal enhancement, tumor size ≥ 2.5 cm and linear discriminant analysis model achieved highest performance with AUC of 0.72 among 13 models.
- mpMRI-based ML model enables prediction of BRCA mutations without invasive genetic testing.
- This approach provide essential insights for personalized treatment and genetic counseling.
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. MRI Examination
2.3. MRI Image Analysis
2.4. Kinetic Feature Analysis
2.5. DWI Analysis
2.6. Histopathologic Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. MRI Morphological Features According to BRCA Mutation
3.3. Kinetic Features and ADC Values According to BRCA Mutation
3.4. Multiparametric Features Associated with the Germline BRCA-Positive Group
3.5. Diagnostic Performance of Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, G.F.; Hughes, K.S.; Lynch, H.T.; Fabian, C.J.; Fentiman, I.S.; Robson, M.E.; Domchek, S.M.; Hartmann, L.C.; Holland, R.; Winchester, D.J.; et al. Proceedings of the International Consensus Conference on Breast Cancer Risk, Genetics, & Risk Management, April, 2007. Cancer 2008, 113, 2627–2637. [Google Scholar] [CrossRef]
- Brose, M.S.; Rebbeck, T.R.; Calzone, K.A.; Stopfer, J.E.; Nathanson, K.L.; Weber, B.L. Cancer Risk Estimates for BRCA1 Mutation Carriers Identified in a Risk Evaluation Program. JNCI J. Natl. Cancer Inst. 2002, 94, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Easton, D.F.; Bishop, D.T.; Ford, D.; Crockford, G.P. Genetic linkage analysis in familial breast and ovarian cancer: Results from 214 families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 1993, 52, 678–701. [Google Scholar] [PubMed]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G.; et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; Van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef]
- Robson, M.E. Treatment of Hereditary Breast Cancer. Semin. Oncol. 2007, 34, 384–391. [Google Scholar] [CrossRef]
- Bedrosian, I.; Somerfield, M.R.; Achatz, M.I.; Boughey, J.C.; Curigliano, G.; Friedman, S.; Kohlmann, W.K.; Kurian, A.W.; Laronga, C.; Lynce, F.; et al. Germline Testing in Patients with Breast Cancer: ASCO–Society of Surgical Oncology Guideline. J. Clin. Oncol. 2024, 42, 584–604. [Google Scholar] [CrossRef]
- Al-Shamsi, H.O.; Alwbari, A.; Azribi, F.; Calaud, F.; Thuruthel, S.; Tirmazy, S.H.H.; Kullab, S.; Ostomane, S.; Abulkhair, O. BRCA testing and management of BRCA-mutated early-stage breast cancer: A comprehensive statement by expert group from GCC region. Front. Oncol. 2024, 14, 1358982. [Google Scholar] [CrossRef]
- Engel, C.; Rhiem, K.; Hahnen, E.; Loibl, S.; Weber, K.E.; Seiler, S.; Zachariae, S.; Hauke, J.; Wappenschmidt, B.; Waha, A.; et al. Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history. BMC Cancer 2018, 18, 265. [Google Scholar] [CrossRef]
- Lee, C.K.; Friedlander, M.L.; Tjokrowidjaja, A.; Ledermann, J.A.; Coleman, R.L.; Mirza, M.R.; Matulonis, U.A.; Pujade-Lauraine, E.; Bloomfield, R.; Goble, S.; et al. Molecular and clinical predictors of improvement in progression-free survival with maintenance PARP inhibitor therapy in women with platinum-sensitive, recurrent ovarian cancer: A meta-analysis. Cancer 2021, 127, 2432–2441. [Google Scholar] [CrossRef]
- Tung, N.; Garber, J.E. PARP inhibition in breast cancer: Progress made and future hopes. npj Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Kriege, M.; Brekelmans, C.T.M.; Boetes, C.; Besnard, P.E.; Zonderland, H.M.; Obdeijn, I.M.; Manoliu, R.A.; Kok, T.; Peterse, H.; Tilanus-Linthorst, M.M.A.; et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med. 2004, 351, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K.; Schmutzler, R.K.; Leutner, C.C.; Kempe, A.; Wardelmann, E.; Hocke, A.; Maringa, M.; Pfeifer, U.; Krebs, D.; Schild, H.H. Breast MR imaging screening in 192 women proved or suspected to be carriers of a breast cancer susceptibility gene: Preliminary results. Radiology 2000, 215, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Sardanelli, F.; Podo, F.; D’AGnolo, G.; Verdecchia, A.; Santaquilani, M.; Musumeci, R.; Trecate, G.; Manoukian, S.; Morassut, S.; de Giacomi, C.; et al. Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results. Radiology 2007, 242, 698–715. [Google Scholar] [CrossRef]
- Warner, E.; Plewes, D.B.; Hill, K.A.; Causer, P.A.; Zubovits, J.T.; Jong, R.A.; Cutrara, M.R.; DeBoer, G.; Yaffe, M.J.; Messner, S.J.; et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 2004, 292, 1317–1325. [Google Scholar] [CrossRef]
- Veltman, J.; Mann, R.; Kok, T.; Obdeijn, I.M.; Hoogerbrugge, N.; Blickman, J.G.; Boetes, C. Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI. Eur. Radiol. 2008, 18, 931–938. [Google Scholar] [CrossRef]
- Noh, J.M.; Han, B.-K.; Choi, D.H.; Rhee, S.J.; Cho, E.Y.; Huh, S.J.; Park, W.; Park, H.; Nam, S.J.; Lee, J.E.; et al. Association between BRCA Mutation Status, Pathological Findings, and Magnetic Resonance Imaging Features in Patients with Breast Cancer at Risk for the Mutation. J. Breast Cancer 2013, 16, 308–314. [Google Scholar] [CrossRef]
- Schrading, S.; Kuhl, C.K. Mammographic, US, and MR imaging phenotypes of familial breast cancer. Radiology 2008, 246, 58–70. [Google Scholar] [CrossRef]
- Ha, S.M.; Chae, E.Y.; Cha, J.H.; Kim, H.H.; Shin, H.J.; Choi, W.J. Association of BRCA Mutation Types, Imaging Features, and Pathologic Findings in Patients with Breast Cancer with BRCA1 and BRCA2 Mutations. Am. J. Roentgenol. 2017, 209, 920–928. [Google Scholar] [CrossRef]
- Lwein, A.A.; Kim, S.G.; Babb, J.S.; Melsaether, A.N.; McKellop, J.; Moccaldi, M.; Leite, A.P.K.; Moy, L. Assessment of Background Parenchymal Enhancement and Lesion Kinetics in Breast MRI of BRCA 1/2 Mutation Carriers Compared to Matched Controls Using Quantitative Kinetic Analysis. Acad. Radiol. 2016, 23, 358–367. [Google Scholar] [CrossRef]
- Chung, S.Y.; Cha, J.H.; Kim, H.H.; Shin, H.J.; Kim, H.J.; Chae, E.Y.; Shin, J.E.; Choi, W.J.; Hong, M.J.; Ahn, S.H.; et al. Magnetic Resonance Imaging of Breast Cancer Patients with BRCA Mutation. J. Korean Soc. Magn. Reson. Med. 2013, 17, 207–214. [Google Scholar] [CrossRef]
- Song, S.E.; Woo, O.H.; Cho, Y.; Cho, K.R.; Park, K.H.; Kim, J.W. Prediction of Axillary Lymph Node Metastasis in Early-stage Triple-Negative Breast Cancer Using Multiparametric and Radiomic Features of Breast MRI. Acad. Radiol. 2023, 30 (Suppl. 2), S25–S37. [Google Scholar] [CrossRef] [PubMed]
- Song, S.E.; Cho, K.R.; Cho, Y.; Kim, K.; Jung, S.P.; Seo, B.K.; Woo, O.H. Machine learning with multiparametric breast MRI for prediction of Ki-67 and histologic grade in early-stage luminal breast cancer. Eur. Radiol. 2022, 32, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, G.; Costa, M.J.; Long, C.; Wetzler, I.R.; Hoyer, J.; Kraus, C.; Popp, B.; Emons, J.; Wunderle, M.; Wenkel, E.; et al. Breast MRI texture analysis for prediction of BRCA-associated genetic risk. BMC Med. Imaging 2020, 20, 86. [Google Scholar] [CrossRef]
- Morris, E.A.; Comstock, C.E.; Lee, C.H. ACR BI-RADS magnetic resonance imaging. In ACR BI-RADS Atlas, Breast Imaging Reporting and Data System, 5th ed.; D’Orsi, C.J., Sickles, E.A., Mendelson, E.B., Eds.; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Baltzer, P.A.T.; Yang, F.; Dietzel, M.; Herzog, A.; Simon, A.; Vag, T.; Gajda, M.; Camara, O.; Kaiser, W.A. Sensitivity and specificity of unilateral edema on T2w-TSE sequences in MR-Mammography considering 974 histologically verified lesions. Breast J. 2010, 16, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, T.; Kasami, M.; Watanabe, J. Is evaluation of the presence of prepectoral edema on T2-weighted with fat-suppression 3 T breast MRI a simple and readily available noninvasive technique for estimation of prognosis in patients with breast cancer? Breast Cancer 2014, 21, 684–692. [Google Scholar] [CrossRef]
- Levman, J.E.; Causer, P.; Warner, E.; Martel, A.L. Effect of the enhancement threshold on the computer-aided detection of breast cancer using MRI. Acad. Radiol. 2009, 16, 1064–1069. [Google Scholar] [CrossRef]
- Hammond, M.E.H.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Burnside, E.S.; Huang, E.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Zuley, M.; Net, J.M.; et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. npj Breast Cancer 2016, 2, 16012. [Google Scholar] [CrossRef]
- Grubstein, A.; Rapson, Y.; Benzaquen, O.; Rozenblatt, S.; Gadiel, I.; Atar, E.; Yerushalmi, R.; Cohen, M.J. Comparison of background parenchymal enhancement and fibroglandular density at breast magnetic resonance imaging between BRCA gene mutation carriers and non-carriers. Clin. Imaging 2018, 51, 347–351. [Google Scholar] [CrossRef]
- Venkitaraman, A.R. How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? DNA Repair 2019, 81, 102668. [Google Scholar] [CrossRef]
- Gullo, R.L.; Eskreis-Winkler, S.; Morris, E.A.; Pinker, K. Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy. Breast 2020, 49, 115–122. [Google Scholar] [CrossRef]
- Reig, B.; Heacock, L.; Geras, K.J.; Moy, L. Machine learning in breast MRI. J. Magn. Reson. Imaging 2020, 52, 998–1018. [Google Scholar] [CrossRef]
Features | All (n = 231) | BRCA-Positive (n = 82) | BRCA-Negative (n = 149) | p Value |
---|---|---|---|---|
Patients’ Mean age (years) | 50.3 ± 12.6 | 55.0 ± 12.2 | 47.8 ± 12.1 | <0.001 |
Histologic Grade | 0.003 | |||
1 or 2 | 140 (60.6) | 39 (47.6) | 101 (67.8) | |
3 | 91 (39.4) | 43 (52.4) | 58 (32.2) | |
Mean invasive tumor size (cm) | 2.4 ± 2.0 | 2.8 ± 2.1 | 2.2 ± 1.9 | 0.039 |
Axillary lymph node metastasis | 86 (37.2) | 34 (41.5) | 52 (34.9) | 0.394 |
Lymphovascular invasion | 43 (18.6) | 18 (22.0) | 25 (16.8) | 0.378 |
Molecular Subtypes | 0.005 | |||
Luminal | 135 | 39 (47.6) | 96 (64.4) | |
HER-2 | 61 | 26 (31.7) | 35 (23.5) | |
Triple-Negative | 35 | 17 (20.7) | 18 (12.1) |
Features | All (n = 231) | BRCA-Positive (n = 82) | BRCA-Negative (n = 149) | p Value |
---|---|---|---|---|
Morphologic features | ||||
Amount of fibroglandular tissue | 0.201 | |||
Nondense | 48 | 20 (24.4) | 28 (18.8) | |
Dense | 183 | 62 (75.6) | 121 (81.2) | |
Background parenchymal enhancement | 0.001 | |||
Minimal or mild | 146 | 63 (76.8) | 83 (55.7) | |
Moderate or marked | 85 | 19 (23.2) | 66 (44.3) | |
Lesion type | 1.000 | |||
Mass * | 212 | 75 (91.5) | 137 (91.9) | |
Non-mass enhancement | 19 | 7 (8.5) | 12 (8.1) | |
Mass shape * | 0.513 | |||
Round to oval | 69 | 24 (32.0) | 45 (32.8) | |
Irregular | 143 | 51 (68.0) | 92 (67.2) | |
Mass margin * | 0.299 | |||
Circumscribed | 29 | 12 (16.0) | 17 (12.4) | |
Not circumscribed | 183 | 63 (84.0) | 120 (87.6) | |
Mass internal enhancement * | 0.079 | |||
Homo- or heterogeneous | 163 | 53 (70.7) | 110 (80.3) | |
Rim | 49 | 22 (29.3) | 27 (19.7) | |
Intratumoral high SI on T2WI | 0.494 | |||
No | 103 | 36 (43.9) | 67 (45.0) | |
Yes | 128 | 46 (56.1) | 82 (55.0) | |
Peritumoral edema on T2WI | 0.022 | |||
Absent | 83 | 22 (26.8) | 61 (40.9) | |
Present | 148 | 60 (73.2) | 88 (59.1) | |
Axillary lymph node enlargement | 0.035 | |||
Absent | 89 | 24 (29.3) | 65 (43.6) | |
Present | 142 | 58 (70.7) | 84 (56.4) | |
Kinetic features on CAD | ||||
Tumor size (cm) † | 3.0 ± 1.9 | 3.5 ± 1.0 | 2.6 ± 1.7 | <0.001 |
Angio-volume (cm3) † | 9.9 ± 23.6 | 16.1 ± 35.2 | 6.6 ± 12.4 | <0.001 |
Peak enhancement (%) † | 343.2 ± 245.5 | 417.2 ± 306.6 | 302.5 ± 193.8 | 0.001 |
Early phase-medium component (%) † | 29.8 ± 34.3 | 25.3 ± 33.1 | 32.4 ± 34.7 | 0.252 |
Early phase-rapid component (%) † | 70.1 ± 34.2 | 74.8 ± 33.1 | 67.5 ± 34.8 | 0.242 |
Delayed phase-persistent component (%) | 43.5 ± 25.2 | 36.1 ± 21.6 | 47.6 ± 26.1 | 0.002 |
Delayed phase-plateau component (%) † | 32.3 ± 14.5 | 31.9 ± 11.6 | 32.6 ± 16.2 | 0.673 |
Delayed phase-washout component (%) † | 24.1 ± 21.3 | 31.9 ± 21.6 | 19.8 ± 19.9 | <0.001 |
ADC values on DWI | ||||
Mean ADC † (×10−3 mm2/s) | 1.00 ± 0.21 | 0.97 ± 0.12 | 1.02 ± 0.25 | 0.145 |
Minimum ADC † (×10−3 mm2/s) | 0.72 ± 0.43 | 0.78 ± 0.40 | 0.69 ± 0.44 | 0.096 |
Maximum ADC † (×10−3 mm2/s) | 1.43 ± 0.52 | 1.45 ± 0.52 | 1.42 ± 0.52 | 0.784 |
SD of ADC † (×10−3 mm2/s) | 0.18 ± 0.08 | 0.05 ± 0.29 | 0.02 ± 0.10 | 0.055 |
Features | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Odds Ratio | p Value | Adjusted Odds Ratio | p Value | |
Morphologic features | ||||
Background parenchymal enhancement | 0.002 | 0.004 | ||
Minimal or mild | 2.64 (1.44–4.83) | 2.57 (1.34–4.93) | ||
Moderate or marked | Reference | Reference | ||
Peritumoral edema | 0.034 | |||
Yes | 1.89 (1.05–3.40) | |||
No | Reference | |||
Axillary lymph node enlargement | 0.033 | |||
Yes | 1.87 (1.05–3.32) | |||
No | Reference | |||
Kinetic Features | ||||
CAD-derived Tumor size (cm) | 0.002 | 0.004 | ||
≥2.5 | 2.44 (1.40–4.24) | 2.41 (1.32–4.38) | ||
<2.5 | Reference | Reference | ||
CAD-derived Angio-volume (cm3) | 0.001 | |||
≥3.9 | 2.51 (1.44–4.36) | |||
<3.9 | Reference | |||
CAD-derived Peak Enhancement (%) | <0.001 | |||
≥314.5 | 2.88 (1.65–5.04) | |||
<314.5 | Reference | |||
Delayed phase-persistent component (%) | 0.020 | |||
<32.5 | 1.92 (1.10–3.32) | |||
≥32.5 | Reference | |||
Delayed phase-washout component (%) | <0.001 | <0.001 | ||
≥19.5 | 4.28 (2.37–7.71) | 3.89 (2.11–7.15) | ||
<19.5 | Reference | Reference |
Univariate | Univariate | Univariate | Univariate | Univariate | Univariate | Multivariate | Univariate | Multivariate | |
---|---|---|---|---|---|---|---|---|---|
Clinical | Kinetic | Morphologic | Clinical + Kinetic | Clinical + Morphologic | Clinical + mpMRI(Morphologic + Kinetic) | Clinical + mpMRI(Morphologic + Kinetic) | mpMRI (Morphologic + Kinetic) | mpMRI (Morphologic + Kinetic) | |
AB | 0.6916 (0.0683) | 0.6687 (0.0763) | 0.6370 (0.0702) | 0.7616 (0.0631) | 0.6844 (0.0731) | 0.7627 (0.0644) | 0.7654 (0.0647) | 0.6953 (0.0684) | 0.7147 (0.0654) |
CB | 0.6041 (0.0785) | 0.5895 (0.0893) | 0.6200 (0.0674) | 0.7221 (0.0689) | 0.6208 (0.0708) | 0.7288 (0.0718) | 0.7229 (0.0581) | 0.6404 (0.0817) | 0.6531 (0.0754) |
DT | 0.6487 (0.0853) | 0.6528 (0.0756) | 0.6195 (0.0673) | 0.7396 (0.0597) | 0.6882 (0.0799) | 0.7344 (0.0659) | 0.7456 (0.0675) | 0.6925 (0.0848) | 0.6937 (0.0926) |
ET | 0.6750 (0.0598) | 0.7039 (0.0831) | 0.6177 (0.0709) | 0.7395 (0.0686) | 0.6873 (0.0651) | 0.7306 (0.0700) | 0.7274 (0.0687) | 0.7088 (0.0776) | 0.7149 (0.0750) |
KNN | 0.6066 (0.0839) | 0.6665 (0.0916) | 0.6009 (0.0805) | 0.7065 (0.0753) | 0.6619 (0.0585) | 0.6996 (0.0735) | 0.7285 (0.0715) | 0.6635 (0.0670) | 0.6866 (0.0783) |
LDA | 0.6849 (0.0630) | 0.7009 (0.0823) | 0.6430 (0.0698) | 0.7692 (0.0659) | 0.6932 (0.0606) | 0.7588 (0.0689) | 0.7541 (0.0670) | 0.7196 (0.0781) | 0.7277 (0.0742) |
EN | 0.6899 (0.0643) | 0.6929 (0.0815) | 0.6403 (0.0711) | 0.7725 (0.0635) | 0.6830 (0.0565) | 0.7586 (0.0628) | 0.7676 (0.0675) | 0.7133 (0.0768) | 0.7245 (0.0744) |
LR | 0.6893 (0.0637) | 0.6994 (0.0830) | 0.6422 (0.0706) | 0.7701 (0.0668) | 0.6990 (0.0606) | 0.7530 (0.0680) | 0.7653 (0.0681) | 0.7173 (0.0804) | 0.7268 (0.0750) |
MLP | 0.6392 (0.0979) | 0.6821 (0.0910) | 0.6115 (0.0769) | 0.7250 (0.0718) | 0.6731 (0.0795) | 0.7335 (0.0713) | 0.7169 (0.0850) | 0.7078 (0.0721) | 0.7001 (0.0912) |
NB | 0.6555 (0.0754) | 0.6959 (0.0838) | 0.6346 (0.0714) | 0.7253 (0.0760) | 0.6679 (0.0764) | 0.7300 (0.0764) | 0.7141 (0.0812) | 0.7087 (0.0820) | 0.7075 (0.0786) |
QDA | 0.6495 (0.0757) | 0.6820 (0.0745) | 0.6332 (0.0735) | 0.7252 (0.0637) | 0.6435 (0.0701) | 0.7157 (0.0665) | 0.7285 (0.0689) | 0.6749 (0.0650) | 0.7013 (0.0785) |
RF | 0.6816 (0.0760) | 0.6464 (0.0867) | 0.6185 (0.0716) | 0.7538 (0.0635) | 0.7082 (0.0781) | 0.7466 (0.0650) | 0.7669 (0.0621) | 0.6788 (0.0918) | 0.6954 (0.0858) |
SVM | 0.6230 (0.0950) | 0.6783 (0.0798) | 0.5984 (0.1132) | 0.7664 (0.0630) | 0.6637 (0.1113) | 0.7470 (0.0670) | 0.7724 (0.0680) | 0.7052 (0.0722) | 0.7076 (0.0733) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Cho, K.R.; Lee, S.; Cho, D.; Park, K.H.; Cho, Y.S.; Song, S.E. Prediction of Germline BRCA Mutations in High-Risk Breast Cancer Patients Using Machine Learning with Multiparametric Breast MRI Features. Sensors 2025, 25, 5500. https://doi.org/10.3390/s25175500
Park H, Cho KR, Lee S, Cho D, Park KH, Cho YS, Song SE. Prediction of Germline BRCA Mutations in High-Risk Breast Cancer Patients Using Machine Learning with Multiparametric Breast MRI Features. Sensors. 2025; 25(17):5500. https://doi.org/10.3390/s25175500
Chicago/Turabian StylePark, Hyeonji, Kyu Ran Cho, SeungJae Lee, Doohyun Cho, Kyong Hwa Park, Yoon Sang Cho, and Sung Eun Song. 2025. "Prediction of Germline BRCA Mutations in High-Risk Breast Cancer Patients Using Machine Learning with Multiparametric Breast MRI Features" Sensors 25, no. 17: 5500. https://doi.org/10.3390/s25175500
APA StylePark, H., Cho, K. R., Lee, S., Cho, D., Park, K. H., Cho, Y. S., & Song, S. E. (2025). Prediction of Germline BRCA Mutations in High-Risk Breast Cancer Patients Using Machine Learning with Multiparametric Breast MRI Features. Sensors, 25(17), 5500. https://doi.org/10.3390/s25175500