Opioid Detection Using Smartphone-Based Eye-Scanning
Abstract
Highlights
- Smartphone-based eye scanning can detect opioid use without individualization up to 5 h after intake.
- For smartphone-based eye scanning, there is no need for special lighting equipment.
- Consumer electronics is sufficiently good for high-quality pupillometry.
- Smartphone-based eye scanning can be the future for detecting opioid consumption.
Abstract
1. Introduction
2. Methods
2.1. Study Design and Ethics
2.2. Participants
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Participants and Recruitment
3.2. Oxycodone Pharmacokinetics
3.3. Measuring Pupil Size and Light Quantity in the Room
3.4. Pupil Size and Oxycodone Intake
3.5. Prediction of Oxycodone Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
AI | Artificial Intelligence |
MPSES | Mobile phone-based self-administered eye scanning |
NC | Non-convergence |
NY | Horizontal nystagmus |
PK | Pharmacokinetic |
PLR | Pupillary light reflex |
Appendix A
Procedure | Description | Key Features | Description |
---|---|---|---|
Pupillary light reflex (PLR) | Use voice guidance to instruct the person to (1) flip the phone to face the back side camera, and (2) position the camera adequately. Next, while looking straight into the smartphone camera with eyes wide open, illuminate the eyes with the flashlight for 4 s. Extract pupil sizes for both eyes over time from the collected video, estimate key features on each eye, and report average. The PLR procedure produced complete key feature data in 94% of the cases. Redness could be produced in 97% of the cases. | Dbase | Pupil size at start of illumination |
Dcon | Pupil size at maximum contraction | ||
Dend | Pupil size at end of illumination | ||
Latency | Time to first visible pupil size reaction | ||
Ctime | Time to Dcon | ||
MCV | Max contraction velocity, the largest negative slope during illumination | ||
PESC | Dend-Dcon | ||
MCA | Dbase-Dcon | ||
RMCA | MCA/Dbase | ||
Redness | Color of the sclera in CIELAB-A color coordinate | ||
Non-convergence (NC) | Using voice guidance, ask the person to first look straight, and later to cross their eyes, all while facing the smartphone camera. Extract horizontal iris positions over time from collected video. The NC procedure produced key feature data in 94% of the cases. | NCdiff | [Distance between eyes when looking straight]–[Distance between eyes when crossing them] |
Nystagmus (NY) | Using voice guidance, ask the person to first look straight, and later to look far to the side without turning the head, all while facing the smartphone camera. Extract horizontal iris position vs. time from collected video for the eye looking to the lateral side. If horizontal nystagmus occurs, it will be visible as a small peak in the graph of iris position vs. time. The NY procedure produced complete key feature data in 87% of the cases. | NYnumber | Number of peaks greater than a threshold per unit time in the trajectory of iris position over time while looking far to the side |
NYmass | Area of the peaks identified in Peak Counts |
Appendix B
References
- Knaggs, R.D.; Crighton, I.M.; Cobby, T.F.; Fletcher, A.J.P.; Hobbs, G.J. The pupillary effects of intravenous morphine, codeine, and tramadol in volunteers. Anesth. Analg. 2004, 99, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, L.L.; Bigelow, G.E. Opioid miosis: Effects of lighting intensity and monocular and binocular exposure. Drug Alcohol. Depend. 1993, 31, 177–181. [Google Scholar] [CrossRef]
- McKay, R.E.; Larson, M.D. Detection of opioid effect with pupillometry. Auton. Neurosci. 2021, 235, 102869. [Google Scholar] [CrossRef]
- Manion, G.N.; Stokkermans, T.J. The Effect of Pupil Size on Visual Resolution. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Spector, R.H. The Pupils. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Couret, D.; Boumaza, D.; Grisotto, C.; Triglia, T.; Pellegrini, L.; Ocquidant, P.; Bruder, N.J.; Velly, L.J. Reliability of standard pupillometry practice in neurocritical care: An observational, double-blinded study. Crit. Care 2016, 20, 99. [Google Scholar] [CrossRef]
- Zafar, S.F.; Suarez, J.I. Automated pupillometer for monitoring the critically ill patient: A critical appraisal. J. Crit. Care 2014, 29, 599–603. [Google Scholar] [CrossRef]
- Rollins, M.D.; Feiner, J.R.; Lee, J.M.; Shah, S.; Larson, M. Pupillary effects of high-dose opioid quantified with infrared pupillometry. Anesthesiology 2014, 121, 1037–1044. [Google Scholar] [CrossRef]
- Larson, M.D.; Singh, V. Portable infrared pupillometry in critical care. Crit. Care 2016, 20, 161. [Google Scholar] [CrossRef]
- Kuijpers, K.W.K.; Andersson, K.; Winkvist, M.; Niesters, M.; van Velzen, M.; Nyberg, F.; Dahan, A.; Hamalainen, M.D. Eye reactions under the influence of drugs of abuse as measured by smartphones: A controlled clinical study in healthy volunteers. Front. Neurosci. 2024, 18, 1492246. [Google Scholar] [CrossRef]
- Ong, C.; Hutch, M.; Smirnakis, S. The Effect of Ambient Light Conditions on Quantitative Pupillometry. Neurocrit Care 2019, 30, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, M.; Zetterström, A.; Andersson, K. Quality Assurance in Medical Facial Images with Respect to Ambient Illumination. 2023. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2023249547 (accessed on 1 August 2025).
- Hall, C.A.; Chilcott, R.P. Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics. Diagnostics 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Kaur, S.; Ram, J. Illicit drugs: Effects on eye. Indian J. Med. Res. 2019, 150, 228–238. [Google Scholar] [CrossRef]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef]
- Lim, B.G.; Lee, J.Y.; Kim, H.; Lee, D.K.; Lee, M.K. Nystagmus caused by epidural fentanyl. J. Anesth. 2012, 26, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, M.; Nabovati, P.; Hashemi, H.; Talaei, A.; Fathi, H.R.; Yekta, Y.; Ostadimoghaddam, H.; Yekta, A.; Khabazkhoob, M. Accommodative and convergence anomalies in patients with opioid use disorder. Clin. Exp. Optom. 2022, 105, 392–397. [Google Scholar] [CrossRef]
- Kongsgaard, U.E.; Hoiseth, G. Dynamic assessment of the pupillary reflex in patients on high-dose opioids. Scand. J. Pain. 2019, 19, 465–471. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction and Europol. EU Drug Market: Heroin and Other Opioids—In-Depth Analysis. Available online: https://www.emcdda.europa.eu/publications/eu-drug-markets/heroin-and-other-opioids_en (accessed on 8 May 2025).
- Milone, M.C. Laboratory testing for prescription opioids. J. Med. Toxicol. 2012, 8, 408–416. [Google Scholar] [CrossRef]
- Murillo, R.; Crucilla, C.; Schmittner, J.; Hotchkiss, E.; Pickworth, W.B. Pupillometry in the detection of concomitant drug use in opioid-maintained patients. Methods Find. Exp. Clin. Pharmacol. 2004, 26, 271–275. [Google Scholar] [CrossRef]
- Gerona, R.R.; French, D. Drug testing in the era of new psychoactive substances. Adv. Clin. Chem. 2022, 111, 217–263. [Google Scholar] [CrossRef]
- Leow, K.P.; Smith, M.T.; Williams, B.; Cramond, T. Single-dose and steady-state pharmacokinetics and pharmacodynamics of oxycodone in patients with cancer. Clin. Pharmacol. Ther. 1992, 52, 487–495. [Google Scholar] [CrossRef]
- Umukoro, N.N.; Aruldhas, B.W.; Rossos, R.; Pawale, D.; Renschler, J.S.; Sadhasivam, S. Pharmacogenomics of oxycodone: A narrative literature review. Pharmacogenomics 2021, 22, 275–290. [Google Scholar] [CrossRef]
- Manflod, J.; Gumbel, T.; Winkvist, M.; Hamalainen, M.D.; Andersson, K. Smartphone-based drug testing in the hands of patients with substance-use disorder-a usability study. Front. Digit. Health 2024, 6, 1394322. [Google Scholar] [CrossRef] [PubMed]
- van der Wel, P.; van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Erdem, U.; Gundogan, F.C.; Dinc, U.A.; Yolcu, U.; Ilhan, A.; Altun, S. Acute effect of cigarette smoking on pupil size and ocular aberrations: A pre- and postsmoking study. J. Ophthalmol. 2015, 2015, 625470. [Google Scholar] [CrossRef]
- Hartmann, E.V.; Reichert, C.F.; Spitschan, M. Effects of caffeine intake on pupillary parameters in humans: A systematic review and meta-analysis. Behav. Brain Funct. 2024, 20, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuijpers, K.W.K.; Andersson, K.; Dahan, A.; Hämäläinen, M.D.; van Velzen, M. Opioid Detection Using Smartphone-Based Eye-Scanning. Sensors 2025, 25, 5467. https://doi.org/10.3390/s25175467
Kuijpers KWK, Andersson K, Dahan A, Hämäläinen MD, van Velzen M. Opioid Detection Using Smartphone-Based Eye-Scanning. Sensors. 2025; 25(17):5467. https://doi.org/10.3390/s25175467
Chicago/Turabian StyleKuijpers, Kiki W. K., Karl Andersson, Albert Dahan, Markku D. Hämäläinen, and Monique van Velzen. 2025. "Opioid Detection Using Smartphone-Based Eye-Scanning" Sensors 25, no. 17: 5467. https://doi.org/10.3390/s25175467
APA StyleKuijpers, K. W. K., Andersson, K., Dahan, A., Hämäläinen, M. D., & van Velzen, M. (2025). Opioid Detection Using Smartphone-Based Eye-Scanning. Sensors, 25(17), 5467. https://doi.org/10.3390/s25175467