An Autonomous Operation Path Planning Method for Wheat Planter Based on Improved Particle Swarm Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Operational Modeling
2.1.1. Farm Information Processing
2.1.2. Farmland Environmental Modeling
2.1.3. Objective Function
2.1.4. Restrictive Condition
2.2. Full Coverage Path Planning
2.2.1. Mode of Operation
2.2.2. Vehicle Turning Strategies
2.3. Algorithm Description
2.4. Improvements to the PSO Algorithm
2.4.1. Initialization Based on Tent Chaotic Mapping
2.4.2. Improved Inertia Weight Based on Logistic
2.4.3. Gaussian Perturbation Strategy
Algorithm 1. TLG-PSO. |
Initialize population and parameters num_particles = N MaxIter = T theta_min = 0° theta_max = 180° c1, c2 = learning factors Initialize chaotic variable r_0 and Gaussian parameters σ_0, σ_min # Phase 1: Tent chaotic initialization For i = 1:N do Generate chaotic sequence u_i using Tent mapping (Equation (14)) Add small perturbation δ ~ U(−10^−4, 10^−4) to avoid fixed points Map u_i into [theta_min, theta_max] to initialize position x(i) Initialize velocity v(i) with small random values Evaluate fitness Fit[i] = PathLength(x(i)) Set pbest[i] = x(i), fpbest[i] = Fit[i] End For Initialize gbest and fgbest from pbest # Phase 2: Iterative optimization (Logistic inertia and Gaussian perturbation) t = 0 While (t < T) do Update chaotic variable r_t using Logistic mapping (Equation (15)) Compute dynamic inertia weight w_t using (Equation (16)) Compute adaptive Gaussian std σ_t = σ_0 × (1 − t/T) + σ_min For i = 1:N do Generate random numbers r1, r2 ~ U(0, 1) Sample Gaussian perturbation g_ti using (Equation (18)) Update velocity v(i) using (Equation (17)) with w_t and g_ti Update position x(i) = x(i) + v(i) with boundary handling Evaluate fitness NewFit[i] = PathLength(x(i)) If NewFit[i] < fpbest[i] then update pbest[i] and fpbest[i] End For Update gbest and fgbest from current best particle t = t + 1 End While Output the global optimal angle theta_best and the minimal path length L_best |
3. Experiments and Results
3.1. TLG-PSO Algorithm Performance Test Experiments
3.1.1. Test Functions
3.1.2. Experimental Setup and Results
3.2. Path Planning Simulation Experiments
3.2.1. Evaluation Metrics
3.2.2. Comparative Experiments on Path Planning Methods for Fields of Different Shapes
3.2.3. Comparative Experiments of TLG-PSO Algorithm in Path Optimization
3.2.4. Comprehensive Evaluation of Path Planning Optimization Methods Across All Fields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, J.; Tang, L. Coverage path planning on three-dimensional terrain for arable farming. J. Field Rob. 2011, 28, 424–440. [Google Scholar] [CrossRef]
- Höffmann, M.; Patel, S.; Büskens, C. Optimal guidance track generation for precision agriculture: A review of coverage path planning techniques. J. Field Rob. 2024, 41, 823–844. [Google Scholar] [CrossRef]
- Oksanen, T. Path Planning Algorithms for Agricultural Field Machines. Ph.D. Thesis, Helsinki University of Technology, Spoo, Finland, December 2007. [Google Scholar]
- Hameed, I.A.; Bochtis, D.D.; Sørensen, C.G.; Nøremark, M. Automated generation of guidance lines for operational field planning. Biosyst. Eng. 2010, 107, 294–306. [Google Scholar] [CrossRef]
- Jin, J.; Tang, L. Optimal Coverage Path Planning for Arable Farming on2D Surfaces. Trans. ASABE 2010, 53, 283–295. [Google Scholar] [CrossRef]
- Han, X.; Kim, H.J.; Jeon, C.W.; Moon, H.C.; Kim, J.H.; Seo, I.H. Design and field testing of a polygonal paddy infield path planner for unmanned tillage operations. Comput. Electron. Agric. 2021, 191, 106567. [Google Scholar] [CrossRef]
- Sabelhaus, D.; Röben, F.; Helligen, L.P.M.Z.; Lammers, P.S. Using continuous-curvature paths to generate feasible headland turn manoeuvres. Biosyst. Eng. 2013, 116, 399–409. [Google Scholar] [CrossRef]
- Fennema, R. Coverage Path Planning on Headlands for Autonomous Field Operations. Master’s Thesis, Wageningen University and Research, Wageningen, The Netherlands, March 2023. [Google Scholar]
- Jeon, C.W.; Kim, H.J.; Yun, C.; Han, X.; Kim, J.H. Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor. Biosyst. Eng. 2021, 208, 79–97. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, D.; Chen, Z.; Dong, L.; Zhao, X.; Wu, C. Autonomous operation path planning method for unmanned agricultural machinery. Trans. Chin. Soc. Agric. Eng 2021, 37, 1–7. [Google Scholar]
- Kai, C.; Xie, Y.; Li, Y.; Liu, C.; Mo, J. Full coverage path planning method of agricultural machinery under multiple constraints. Trans. Chin. Soc. Agric. Mach. 2022, 53, 17–26. [Google Scholar]
- Mier, G.; Valente, J.; Bruin, S.D. Fields2Cover: An Open-Source Coverage Path Planning Library for Unmanned Agricultural Vehicles. IEEE Rob. Autom. Lett. 2023, 8, 2166–2172. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia Comput Sci. 2018, 127, 180–189. [Google Scholar] [CrossRef]
- Brand, M.; Masuda, M.; Wehner, N.; Yu, X.H. Ant colony optimization algorithm for robot path planning. In Proceedings of the 2010 international conference on computer design and applications, Qinhuangdao, China, 25–27 June 2010; pp. V3-436–V433-440. [Google Scholar]
- Shi, K.; Wu, Z.; Jiang, B.; Karimi, H.R. Dynamic path planning of mobile robot based on improved simulated annealing algorithm. J. Franklin Inst. 2023, 360, 4378–4398. [Google Scholar] [CrossRef]
- Dao, T.K.; Pan, T.S.; Pan, J.S. A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In Proceedings of the 2016 IEEE 13th international conference on signal processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 337–342. [Google Scholar]
- Syed, U.A.; Kunwar, F.; Iqbal, M. Guided Autowave Pulse Coupled Neural Network (GAPCNN) based real time path planning and an obstacle avoidance scheme for mobile robots. Rob. Autom. Syst. 2014, 62, 474–486. [Google Scholar] [CrossRef]
- Wang, G.G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci. Technol. 2016, 49, 231–238. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Global Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Wu, F.; Wang, Y. Path Planning of UAV Based on Improved Adaptive Grey Wolf Optimization Algorithm. IEEE Access 2021, 9, 89400–89411. [Google Scholar] [CrossRef]
- Ye, F.; Duan, P.; Meng, L.; Xue, L. A hybrid artificial bee colony algorithm with genetic augmented exploration mechanism toward safe and smooth path planning for mobile robot. Biomimetic Intell. Rob. 2025, 5, 100206. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Liu, H.; Li, J.; Wang, P.; Yang, X. A Full-Coverage Path Planning Method for an Orchard Mower Based on the Dung Beetle Optimization Algorithm. Agriculture 2024, 14, 865. [Google Scholar] [CrossRef]
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Zhang, M.; Yang, H. APSO: An A*-PSO Hybrid Algorithm for Mobile Robot Path Planning. IEEE Access 2023, 11, 43238–43256. [Google Scholar] [CrossRef]
- Xie, M.; Bai, Y.; Huang, M.; Deng, Y.; Hu, Z. Energy- and Time-Aware Data Acquisition for Mobile Robots Using Mixed Cognition Particle Swarm Optimization. IEEE Internet Things J. 2020, 7, 7734–7750. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, W.; Qin, M.; Peng, X. Tent–PSO-Based Unmanned Aerial Vehicle Path Planning for Cooperative Relay Networks in Dynamic User Environments. Sensors 2025, 25, 2005. [Google Scholar] [CrossRef]
- Arasomwan, A.M.; Adewumi, A.O. An Investigation into the Performance of Particle Swarm Optimization with Various Chaotic Maps. Math Probl. Eng. 2014, 2014, 1–17. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Kuo, C.N.; Lai, C.M. Comparison of the adaptive inertia weight PSOs based on chaotic logistic map and tent map. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 18–20 July 2017; pp. 355–360. [Google Scholar]
- Demir, F.B.; Tuncer, T.; Kocamaz, A.F. A chaotic optimization method based on logistic-sine map for numerical function optimization. Neural Comput. Appl. 2020, 32, 14227–14239. [Google Scholar] [CrossRef]
- Tian, D. Particle Swarm Optimization with Chaotic Maps and Gaussian Mutation for Function Optimization. Int. J. Grid Distrib. 2015, 8, 123–134. [Google Scholar] [CrossRef]
- Ahmad, M.; Alam, M.Z.; Umayya, Z.; Khan, S.; Ahmad, F. An image encryption approach using particle swarm optimization and chaotic map. Int. J. Inf. Technol. 2018, 10, 247–255. [Google Scholar] [CrossRef]
- Alibrahim, H.; Ludwig, S.A. Image encryption algorithm based on particle swarm optimization and chaos logistic map. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021; pp. 01–08. [Google Scholar]
- Kang, X.; Chen, Y.; Zhao, F.; Lin, G. Multi-dimensional particle swarm optimization for robust blind image watermarking using intertwining logistic map and hybrid domain. Soft Comput. 2020, 24, 10561–10584. [Google Scholar] [CrossRef]
- He, S.; Fu, L.; Lu, Y.; Wu, X.; Wang, H.; Sun, K. Analog Circuit of a Simplified Tent Map and its Application in Sensor Position Optimization. IEEE Trans. Circuits Syst. Express Briefs 2023, 70, 885–888. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, C.; Zhu, D.; Xie, C. Coverage Optimization of Wireless Sensor Networks Using Combinations of PSO and Chaos Optimization. Electronics 2022, 11, 853. [Google Scholar] [CrossRef]
- Ptacek, M.; Frick, F.; Pahl, H.; Stetter, C.; Wimmer, S.; Sauer, J. ‘ShapeCostTUM’: A calculation tool for field geometry dependent cultivation and transport costs. Comput. Electron. Agric. 2024, 225, 109254. [Google Scholar] [CrossRef]
- Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Proceedings of the Field and Service Robotics, 1998; Springer: London, UK, 2012; pp. 203–209. [Google Scholar]
- Wang, F.; He, Z.; Sayre, K.; Li, S.; Si, J.; Feng, B.; Kong, L. Wheat cropping systems and technologies in China. Field Crop Res. 2009, 111, 181–188. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Liu, B.; Wang, L.; Jin, Y.H.; Tang, F.; Huang, D.X. Improved particle swarm optimization combined with chaos. Chaos, Solitons Fractals 2005, 25, 1261–1271. [Google Scholar] [CrossRef]
- Nie, X.; Wang, W.; Nie, H. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT. Comput Intell Neurosci. 2017, 2017, 1583847. [Google Scholar] [CrossRef]
- Han, Y.; Lin, M.; Li, N.; Qi, Q.; Li, J.; Liu, Q. DCWPSO: Particle swarm optimization with dynamic inertia weight updating and enhanced learning strategies. PeerJ Comput. Sci. 2024, 10, e2253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Li, X.; Yi, J. A Hybrid Particle Swarm Optimization Algorithm with Dynamic Adjustment of Inertia Weight Based on a New Feature Selection Method to Optimize SVM Parameters. Entropy 2023, 25, 531. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, R.; Chen, L.; Long, S. Adaptive Particle Swarm Optimization with Gaussian Perturbation and Mutation. Sci. Program. 2021, 2021, 6676449. [Google Scholar] [CrossRef]
- Wang, C.; Shi, T.; Han, D. Adaptive Dimensional Gaussian Mutation of PSO-Optimized Convolutional Neural Network Hyperparameters. Appl. Sci. 2023, 13, 4254. [Google Scholar] [CrossRef]
Function | Formula | Dimension | Domain | Optimal Value |
---|---|---|---|---|
Sphere | 30 | [−100,100] | 0 | |
Ackley | 30 | [−32.8,32.8] | 0 | |
Quartic | 30 | [−1.28,1.28] | 0 | |
Rastrigin | 30 | [−5.12,5.12] | 0 |
Function | Evaluation Metrics | GA | ACO | PSO | BreedPSO | SecPSO | TLG-PSO |
---|---|---|---|---|---|---|---|
Sphere | Mean | 4.26 × 10−7 | 1.84 × 10−8 | 1.78 × 10−7 | 8.24 × 10−8 | 4.62 × 10−7 | 3.89 × 10−10 |
Std | 2.03 × 10−6 | 3.69 × 10−8 | 2.92 × 10−7 | 1.83 × 10−7 | 1.01 × 10−6 | 7.01 × 10−10 | |
Optimal Value | 2.24 × 10−18 | 5.67 × 10−11 | 7.20 × 10−11 | 1.16 × 10−10 | 1.38 × 10−10 | 1.63 × 10−13 | |
Ackley | Mean | 1.49 × 10−3 | 4.58 × 10−2 | 3.58 × 10−3 | 3.13 × 10−3 | 7.10 × 10−3 | 6.75 × 10−5 |
Std | 3.67 × 10−3 | 1.68 × 10−1 | 5.75 × 10−3 | 5.36 × 10−3 | 8.21 × 10−3 | 1.79 × 10−4 | |
Optimal Value | 2.68 × 10−9 | 1.58 × 10−5 | 4.39 × 10−5 | 4.64 × 10−6 | 9.75 × 10−5 | 1.87 × 10−12 | |
Quartic | Mean | 3.46 × 10−3 | 5.80 × 10−3 | 3.96 × 10−3 | 3.80 × 10−3 | 2.53 × 10−3 | 2.50 × 10−3 |
Std | 3.34 × 10−3 | 6.12 × 10−3 | 3.57 × 10−3 | 3.47 × 10−3 | 2.87 × 10−3 | 2.86 × 10−3 | |
Optimal Value | 4.40 × 10−5 | 4.57 × 10−5 | 3.77 × 10−4 | 5.71 × 10−5 | 3.73 × 10−4 | 1.72 × 10−4 | |
Rastrigin | Mean | 4.70 × 10−3 | 3.32 × 10−2 | 1.07 × 10−2 | 1.82 × 10−4 | 3.03 × 10−3 | 2.67 × 10−5 |
Std | 1.20 × 10−2 | 1.79 × 10−1 | 4.09 × 10−2 | 5.09 × 10−4 | 9.23 × 10−3 | 1.14 × 10−4 | |
Optimal Value | 0 | 3.10 × 10−9 | 2.56 × 10−9 | 2.72 × 10−10 | 1.76 × 10−7 | 0 |
Field No. | Perimeter/m | Area/m2 | Headland Width/m | Working Width/m | Turning Radius/m |
---|---|---|---|---|---|
1 | 2945.07 | 504,833 | 3 | 5 | 2.5 |
4 | 2742.38 | 447,559 | 3 | 5 | 2.5 |
12 | 2732.36 | 423,839.75 | 3 | 5 | 2.5 |
16 | 2438.3 | 357,550.71 | 3 | 5 | 2.5 |
Field No. | Path Length/m ↓ | Coverage Rate/% ↑ | Energy/kW ↓ | Labour Savings Rate ↑ | Energy Reduction Rate ↑ | |||
---|---|---|---|---|---|---|---|---|
Tra-Method | Improved Method | Tra-Method | Improved Method | Tra-Method | Improved Method | |||
1 | 178,702 | 176,642 | 99.40% | 99.58% | 934.11 | 913.35 | 96.82% | 2.22% |
4 | 172,317 | 166,605 | 99.12% | 99.50% | 902.71 | 865.66 | 96.72% | 4.10% |
12 | 190,968 | 181,308 | 96.19% | 98.46% | 1008.76 | 940.91 | 97.05% | 6.73% |
16 | 101,405 | 93,925 | 96.57% | 98.97% | 565.55 | 493.43 | 94.67% | 12.75% |
Algorithm | Path Length/m ↓ | Energy/kW ↓ | Conv.speed (Iterations) ↓ | Runtime/s ↓ |
---|---|---|---|---|
GA | 155,196 | 810.57 | 33 | 39.03 |
ACO | 155,478 | 813.36 | 26 | 48.10 |
PSO | 155,376 | 811.67 | 33 | 30.13 |
BreedPSO | 155,039 | 823.71 | 20 | 29.84 |
SecPSO | 154,874 | 811.13 | 64 | 22.74 |
TLG-PSO | 154,620 | 803.34 | 17 | 21.05 |
Method | Path Length /m ↓ | Energy/kW ↓ | Conv.speed (Iterations) ↓ | Runtime/s ↓ |
---|---|---|---|---|
Traditional | 155,530 | 806.94 | − | − |
GA | 148,156 | 771.12 | 24 | 24.23 |
ACO | 147,874 | 768.97 | 23 | 34.22 |
PSO | 147,761 | 768.52 | 24 | 28.19 |
BreedPSO | 147,675 | 767.71 | 21 | 25.76 |
SecPSO | 147,534 | 766.78 | 37 | 24.43 |
TLG-PSO | 147,058 | 762.73 | 20 | 19.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Zhao, Y.; Tian, Y.; Zhang, T. An Autonomous Operation Path Planning Method for Wheat Planter Based on Improved Particle Swarm Algorithm. Sensors 2025, 25, 5468. https://doi.org/10.3390/s25175468
Du S, Zhao Y, Tian Y, Zhang T. An Autonomous Operation Path Planning Method for Wheat Planter Based on Improved Particle Swarm Algorithm. Sensors. 2025; 25(17):5468. https://doi.org/10.3390/s25175468
Chicago/Turabian StyleDu, Shuangshuang, Yunjie Zhao, Yongqiang Tian, and Taihong Zhang. 2025. "An Autonomous Operation Path Planning Method for Wheat Planter Based on Improved Particle Swarm Algorithm" Sensors 25, no. 17: 5468. https://doi.org/10.3390/s25175468
APA StyleDu, S., Zhao, Y., Tian, Y., & Zhang, T. (2025). An Autonomous Operation Path Planning Method for Wheat Planter Based on Improved Particle Swarm Algorithm. Sensors, 25(17), 5468. https://doi.org/10.3390/s25175468