Continuous Estimation of Heart Rate Variability from Electrocardiogram and Photoplethysmogram Signals with Oscillatory Wavelet Pattern Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. ECG and PPG Recordings of Healthy Volunteers at Rest and While Walking
2.1.2. ECG and PPG Recordings of Elderly Volunteers
2.2. Method for Assessing Oscillatory Patterns with Continuous Wavelet Transform
3. Results
3.1. Oscillatory-Pattern Based Algorithm for Detecting Heart Rhythm from ECG/PPG Signals
3.2. Comparison of the Results of HR Detection Using the Method of Oscillatory Patterns for ECG/PPG with the Classical Method of Estimating RR Intervals on ECG
3.3. Demonstration of the Results of HR Detection by the Oscillatory Patterns Method of ECG/PPG Recorded During the Walking of Patients
3.4. Demonstration of the Results of HR Detection by the Oscillatory Patterns Method of ECG Recorded of Elderly Patients (MIT BIH DataBase)
3.5. Frequency-Domain Parameters of HR Detected by the Oscillatory Patterns Method of ECG and PPG Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Evaluation of the Quality of Heart Rate Determination Using the Oscillatory Pattern Method
References
- World Health Organization. Cardiovascular Diseases. Available online: www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 (accessed on 1 July 2024).
- Drapkina, O.M.; Boytsov, S.A.; Omelyanovskiy, V.V.; Kontsevaya, A.V.; Loukianov, M.M.; Ignatieva, V.I.; Derkach, E.V. Socio-economic impact of heart failure in Russia. Russ. J. Cardiol. 2021, 26, 4490. [Google Scholar] [CrossRef]
- Russian Society of Cardiology (RSC). Chronic heart failure. Clinical guidelines 2020. Russ. J. Cardiol. 2020, 25, 4083. [Google Scholar] [CrossRef]
- Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017; The European Heart Network (EHN): Brussels, Belgium, 2017; Available online: https://ehnheart.org/wp-content/uploads/2023/07/CVD-Statistics.pdf (accessed on 1 July 2024).
- Arakawa, T. A review of heartbeat detection systems for automotive applications. Sensors 2021, 21, 6112. [Google Scholar] [CrossRef] [PubMed]
- Belisheva, N.K.; Martynova, A.A.; Kolomeichuk, S.N. Seasonal variations in the mental state and heart rate variability in adolescents residing beyond the Arctic Circle. Russ. Open Med. J. 2024, 13, e0416. [Google Scholar] [CrossRef]
- Kiselev, A.R.; Zhuravlev, M.O.; Runnova, A.O. Assessment of frequency components of ECG waveform variability: Are there prospects for research into cardiac regulation processes? Russ. Open Med. J. 2024, 13, e0412. [Google Scholar] [CrossRef]
- Sidikova, M.; Martinek, R.; Kawala-Sterniuk, A.; Ladrova, M.; Jaros, R.; Danys, L.; Simonik, P. Vital sign monitoring in car seats based on electrocardiography, ballistocardiography and seismocardiography: A review. Sensors 2020, 20, 5699. [Google Scholar] [CrossRef]
- Blanch, L.; Villagra, A.; Sales, B.; Montanya, J.; Lucangelo, U.; Luján, M.; García-Esquirol, O.; Chacón, E.; Estruga, A.; Oliva, J.C.; et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015, 41, 633–641. [Google Scholar] [CrossRef]
- Matrone, G.; Mojoli, F.; Orlando, A.; Braschi, A.; Magenes, G. Automatic detection of patients’ spontaneous activity during pressure support ventilation. In Proceedings of the XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, Chalkidiki, Greece, 27–30 May 2010; Volume 29, pp. 479–482. [Google Scholar] [CrossRef]
- Ozana, N.; Margalith, I.; Beiderman, Y.; Kunin, M.; Campino, G.A.; Gerasi, R.; Garcia, J.; Mico, V.; Zalevsky, Z. Demonstration of a remote optical measurement configuration that correlates with breathing, heart rate, pulse pressure, blood coagulation, and blood oxygenation. Proc. IEEE 2015, 103, 248–262. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, E.J.; Kim, Y.S.; Choi, J.; Kim, T.H.; Kwon, S.Y.; Lee, H.M.; Lee, S.H.; Shin, C.; Lee, S.H. Validation study of portable device for the diagnosis of obstructive sleep apnea according to the new AASM scoring criteria: Watch-PAT 100. Acta Oto-Laryngol. 2010, 130, 838–843. [Google Scholar] [CrossRef]
- Yuceege, M.; Firat, H.; Demir, A.; Ardic, S. Reliability of the Watch-PAT 200 in detecting sleep apnea in highway bus drivers. J. Clin. Sleep Med. 2013, 9, 339–344. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Hamilton, P.S.; Tompkins, W.J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 1986, 33, 1157–1165. [Google Scholar] [CrossRef]
- Hamilton, P. Open-source ECG analysis. In Computers in Cardiology; IEEE: Memphis, TN, USA, 2002; pp. 101–104. [Google Scholar] [CrossRef]
- John, A.; Redmond, S.J.; Cardiff, B.; John, D. A multimodal data fusion technique for heartbeat detection in wearable IoT sensors. IEEE Internet Things J. 2022, 9, 2071–2082. [Google Scholar] [CrossRef]
- Gierałtowski, J.; Ciuchciński, K.; Grzegorczyk, I.; Kośna, K.; Soliński, M.; Podziemski, P. RS slope detection algorithm for extraction of heart rate from noisy, multimodal recordings. Physiol. Meas. 2015, 36, 1743–1761. [Google Scholar] [CrossRef] [PubMed]
- Faust, O.; Hong, W.; Loh, H.W.; Xu, S.; Tan, R.S.; Chakraborty, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Heart rate variability for medical decision support systems: A review. Comput. Biol. Med. 2022, 145, 105407. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Zheng, C.X.; Tai, C.F. Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 1995, 42, 21–28. [Google Scholar] [CrossRef]
- Tu, C.; Zeng, Y.; Yang, X. Nonlinear processing and analysis of ECG data. Technol. Health Care 2004, 12, 1–9. [Google Scholar] [CrossRef]
- Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef]
- Park, J.; Seok, H.S.; Kim, S.S.; Shin, H. Photoplethysmogram analysis and applications: An integrative review. Front. Physiol. 2022, 12, 808451. [Google Scholar] [CrossRef]
- Arunkumar, K.R.; Bhaskar, M. Heart rate estimation from wrist-type photoplethysmography signals during physical exercise. Biomed. Signal Process. Control 2020, 57, 101790. [Google Scholar] [CrossRef]
- Blok, S.; Piek, M.A.; Tulevski, I.I.; Somsen, G.A.; Winter, M.M. The accuracy of heartbeat detection using photoplethysmography technology in cardiac patients. J. Electrocardiol. 2021, 67, 148–157. [Google Scholar] [CrossRef]
- Lewis, G.; Davila, M.; Daubechies, I.; Porges, S.; Wu, H.-T. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Methods Inf. Med. 2016, 55, 463–472. [Google Scholar] [CrossRef]
- Runnova, A.; Zhuravlev, M.; Ukolov, R.; Blokhina, I.; Dubrovski, A.; Lezhnev, N.; Sitnikova, E.; Saranceva, E.; Kiselev, A.; Karavaev, A.; et al. Modified wavelet analysis of ECoG-pattern as promising tool for detection of the blood-brain barrier leakage. Sci. Rep. 2021, 11, 18505. [Google Scholar] [CrossRef]
- Zhuravlev, M.; Suetenkova, D.; Parsamyan, R.; Runnova, A.; Simonyan, M.; Nasrullaev, R.; Kiselev, A.; Suetenkov, D. Changes in EEG oscillatory patterns due to acute stress caused by orthodontic correction. Eur. Phys. J. Spec. Top. 2024, 233, 505–518. [Google Scholar] [CrossRef]
- Ulyanov, V.; Zhuravlev, M.; Kiselev, A.; Musatov, V.; Musatova, T.; Akimova, N.; Parsamyan, R.; Runnova, A. EEG markers of attention sustainability detected in neuropsychological testing in different age groups. Eur. Phys. J. Spec. Top. 2024, 233, 519–530. [Google Scholar] [CrossRef]
- Enright, P.L. The six-minute walk test. Respir. Care 2003, 48, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Simonyan, M.; Fisun, A.; Afanaseva, G.; Glushkovskaya-Semyachkina, O.; Blokhina, I.; Selskii, A.; Zhuravlev, M.; Runnova, A. Oscillatory wavelet-patterns in complex data: Mutual estimation of frequencies and energy dynamics. Eur. Phys. J. Spec. Top. 2023, 232, 595–603. [Google Scholar] [CrossRef]
- Torresani, B. Continuous Wavelet Transform; Savoire: Paris, France, 1995. [Google Scholar]
- Akay, M. Wavelets in biomedical engineering. Ann. Biomed. Eng. 1995, 23, 531–542. [Google Scholar] [CrossRef]
- Staszewski, W.J. Identification of non–linear systems using multi–scale ridges and skeletons of the wavelet transform. J. Sound Vib. 1998, 214, 639–658. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Gerke, O. Reporting Standards for a Bland-Altman Agreement Analysis: A Review of Methodological Reviews. Diagnostics 2020, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Dao, D.; Salehizadeh, S.M.A.; Noh, Y.; Chong, J.W.; Cho, C.H.; McManus, D.; Darling, C.E.; Mendelson, Y.; Chon, K.H. A robust motion artifact detection algorithm for accurate detection of heart rates from photoplethysmographic signals using time–frequency spectral features. IEEE J. Biomed. Health Inform. 2016, 21, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Max, J.; Berthier, D.; Chevalier, H. Méthodes et Techniques de Traitement du Signal et Applications Aux Mesures Physiques; Masson: Paris, France, 1972; Volume 1, p. 355. [Google Scholar]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Shannon, C. The zero error capacity of a noisy channel. IRE Trans. Inf. Theory 1956, 2, 8–19. [Google Scholar] [CrossRef]
- Shannon, C.E. Certain results in coding theory for noisy channels. Inf. Control 1957, 1, 6–25. [Google Scholar] [CrossRef]
- Volosyuk, V.K.; Gulyaev, Y.V.; Kravchenko, V.F.; Kutuza, B.G.; Pavlikov, V.V.; Pustovoit, V.I. Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems. J. Commun. Technol. Electron. 2014, 59, 97–118. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, T.J.; Camm, J.A.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.S. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- De Los Santos, H.J.; Sturm, C.; Pontes, J. Radio Systems Engineering: A Tutorial Approach, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Gadde, S.S.; Kalli, V.D.R. Artificial intelligence to detect heart rate variability. Int. J. Eng. Trends Appl. 2020, 7, 6–10. [Google Scholar] [CrossRef]
- Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Cardiovascular events prediction using artificial intelligence models and heart rate variability. Procedia Comput. Sci. 2022, 203, 231–238. [Google Scholar] [CrossRef]
# | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.030 | 1.029 | 1.030 | 1.028 | 0.068 | 0.068 | 0.069 | 0.072 | 0.013 | 0.016 | 0.016 | 0.007 | 0.007 | 0.002 |
2 | 0.885 | 0.885 | 0.885 | 0.884 | 0.042 | 0.044 | 0.044 | 0.048 | 0.018 | 0.019 | 0.019 | 0.006 | 0.006 | 0.002 |
3 | 1.270 | 1.269 | 1.270 | 1.269 | 0.086 | 0.087 | 0.086 | 0.093 | 0.038 | 0.030 | 0.028 | 0.013 | 0.015 | 0.003 |
4 | 1.021 | 1.020 | 1.021 | 1.020 | 0.045 | 0.045 | 0.045 | 0.059 | 0.044 | 0.034 | 0.033 | 0.035 | 0.035 | 0.002 |
5 | 1.679 | 1.675 | 1.678 | 1.676 | 0.122 | 0.124 | 0.122 | 0.128 | 0.029 | 0.038 | 0.035 | 0.031 | 0.029 | 0.006 |
6 | 1.360 | 1.359 | 1.361 | 1.359 | 0.079 | 0.081 | 0.081 | 0.086 | 0.014 | 0.023 | 0.024 | 0.016 | 0.017 | 0.004 |
7 | 1.035 | 1.035 | 1.035 | 1.034 | 0.036 | 0.037 | 0.037 | 0.051 | 0.030 | 0.033 | 0.033 | 0.008 | 0.009 | 0.002 |
8 | 1.106 | 1.106 | 1.106 | 1.105 | 0.030 | 0.027 | 0.028 | 0.030 | 0.008 | 0.007 | 0.007 | 0.006 | 0.006 | 0.001 |
9 | 0.886 | 0.887 | 0.887 | 0.887 | 0.039 | 0.035 | 0.036 | 0.043 | 0.025 | 0.021 | 0.021 | 0.013 | 0.013 | 0.001 |
10 | 0.855 | 0.847 | 0.846 | 0.842 | 0.063 | 0.049 | 0.044 | 0.087 | 0.057 | 0.060 | 0.064 | 0.020 | 0.025 | 0.009 |
11 | 1.050 | 1.071 | 1.069 | 1.067 | 0.077 | 0.088 | 0.096 | 0.104 | 0.065 | 0.070 | 0.077 | 0.064 | 0.074 | 0.060 |
12 | 1.290 | 1.286 | 1.284 | 1.288 | 0.070 | 0.085 | 0.073 | 0.072 | 0.018 | 0.038 | 0.044 | 0.038 | 0.041 | 0.036 |
13 | 0.965 | 0.964 | 0.973 | 0.964 | 0.048 | 0.051 | 0.085 | 0.056 | 0.024 | 0.028 | 0.036 | 0.011 | 0.021 | 0.016 |
14 | 0.995 | 0.996 | 0.996 | 0.995 | 0.045 | 0.043 | 0.044 | 0.049 | 0.024 | 0.022 | 0.022 | 0.012 | 0.012 | 0.001 |
15 | 1.535 | 1.533 | 1.536 | 1.536 | 0.088 | 0.090 | 0.090 | 0.114 | 0.023 | 0.033 | 0.034 | 0.025 | 0.026 | 0.006 |
16 | 0.975 | 0.974 | 0.975 | 0.974 | 0.037 | 0.036 | 0.036 | 0.041 | 0.015 | 0.015 | 0.014 | 0.003 | 0.003 | 0.001 |
17 | 1.363 | 1.363 | 1.363 | 1.363 | 0.042 | 0.042 | 0.042 | 0.045 | 0.010 | 0.013 | 0.012 | 0.008 | 0.007 | 0.003 |
18 | 1.025 | 1.023 | 1.024 | 1.023 | 0.050 | 0.051 | 0.050 | 0.059 | 0.029 | 0.028 | 0.027 | 0.010 | 0.010 | 0.002 |
19 | 1.619 | 1.618 | 1.618 | 1.618 | 0.065 | 0.058 | 0.058 | 0.060 | 0.036 | 0.021 | 0.020 | 0.036 | 0.035 | 0.003 |
20 | 1.061 | 1.057 | 1.057 | 1.057 | 0.079 | 0.032 | 0.032 | 0.044 | 0.052 | 0.028 | 0.028 | 0.056 | 0.055 | 0.001 |
21 | 1.377 | 1.376 | 1.377 | 1.376 | 0.063 | 0.061 | 0.061 | 0.063 | 0.017 | 0.016 | 0.015 | 0.009 | 0.009 | 0.003 |
22 | 1.129 | 1.128 | 1.129 | 1.128 | 0.038 | 0.038 | 0.037 | 0.042 | 0.010 | 0.010 | 0.010 | 0.004 | 0.004 | 0.002 |
23 | 1.605 | 1.605 | 1.606 | 1.605 | 0.126 | 0.124 | 0.123 | 0.126 | 0.033 | 0.015 | 0.014 | 0.025 | 0.026 | 0.002 |
24 | 1.318 | 1.318 | 1.318 | 1.316 | 0.082 | 0.082 | 0.082 | 0.088 | 0.035 | 0.030 | 0.029 | 0.008 | 0.009 | 0.002 |
25 | 1.391 | 1.389 | 1.392 | 1.388 | 0.110 | 0.114 | 0.114 | 0.117 | 0.019 | 0.029 | 0.028 | 0.016 | 0.015 | 0.004 |
26 | 1.074 | 1.073 | 1.073 | 1.073 | 0.048 | 0.048 | 0.048 | 0.055 | 0.023 | 0.025 | 0.025 | 0.005 | 0.005 | 0.001 |
27 | 1.572 | 1.570 | 1.573 | 1.569 | 0.090 | 0.100 | 0.098 | 0.097 | 0.045 | 0.030 | 0.032 | 0.031 | 0.032 | 0.006 |
28 | 1.105 | 1.094 | 1.099 | 1.094 | 0.105 | 0.099 | 0.097 | 0.115 | 0.075 | 0.038 | 0.052 | 0.057 | 0.067 | 0.024 |
29 | 1.037 | 1.030 | 1.037 | 1.037 | 0.056 | 0.041 | 0.056 | 0.061 | 0.019 | 0.025 | 0.020 | 0.014 | 0.006 | 0.013 |
30 | 0.884 | 0.884 | 0.887 | 0.883 | 0.055 | 0.057 | 0.058 | 0.075 | 0.030 | 0.037 | 0.037 | 0.016 | 0.014 | 0.007 |
31 | 1.241 | 1.243 | 1.243 | 1.243 | 0.066 | 0.055 | 0.055 | 0.058 | 0.027 | 0.020 | 0.020 | 0.020 | 0.020 | 0.002 |
32 | 0.997 | 0.996 | 0.997 | 0.996 | 0.054 | 0.053 | 0.053 | 0.057 | 0.019 | 0.019 | 0.019 | 0.010 | 0.010 | 0.001 |
33 | 1.488 | 1.498 | 1.499 | 1.487 | 0.073 | 0.157 | 0.110 | 0.072 | 0.038 | 0.098 | 0.068 | 0.108 | 0.063 | 0.122 |
34 | 1.226 | 1.223 | 1.228 | 1.225 | 0.058 | 0.065 | 0.066 | 0.069 | 0.044 | 0.054 | 0.054 | 0.027 | 0.029 | 0.009 |
35 | 1.341 | 1.338 | 1.340 | 1.338 | 0.098 | 0.089 | 0.090 | 0.102 | 0.038 | 0.037 | 0.036 | 0.027 | 0.027 | 0.003 |
36 | 1.055 | 1.055 | 1.055 | 1.055 | 0.036 | 0.036 | 0.037 | 0.048 | 0.012 | 0.015 | 0.016 | 0.010 | 0.010 | 0.002 |
37 | 1.064 | 1.056 | 1.067 | 1.067 | 0.108 | 0.098 | 0.108 | 0.114 | 0.043 | 0.053 | 0.034 | 0.043 | 0.019 | 0.033 |
38 | 0.961 | 0.959 | 0.960 | 0.960 | 0.045 | 0.045 | 0.044 | 0.058 | 0.026 | 0.027 | 0.026 | 0.006 | 0.006 | 0.002 |
39 | 1.269 | 1.237 | 1.245 | 1.248 | 0.108 | 0.116 | 0.120 | 0.116 | 0.051 | 0.082 | 0.079 | 0.071 | 0.068 | 0.053 |
40 | 1.549 | 1.553 | 1.552 | 0.772 | 0.073 | 0.099 | 0.079 | 0.039 | 0.052 | 0.070 | 0.071 | 0.047 | 0.053 | 0.044 |
No. | |||||||||
---|---|---|---|---|---|---|---|---|---|
100 | 1.259 | 1.259 | 1.259 | 0.082 | 0.052 | 0.051 | 0.039 | 0.038 | 0.009 |
102 | 1.211 | 1.210 | 1.212 | 0.048 | 0.044 | 0.028 | 0.040 | 0.030 | 0.028 |
103 | 1.162 | 1.162 | 1.163 | 0.050 | 0.042 | 0.042 | 0.030 | 0.030 | 0.005 |
104 | 1.235 | 1.234 | 1.238 | 0.055 | 0.053 | 0.062 | 0.045 | 0.051 | 0.030 |
107 | 1.184 | 1.189 | 1.184 | 0.063 | 0.052 | 0.036 | 0.042 | 0.032 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravlev, M.O.; Runnova, A.E.; Mironov, S.A.; Zhuravleva, J.A.; Kiselev, A.R. Continuous Estimation of Heart Rate Variability from Electrocardiogram and Photoplethysmogram Signals with Oscillatory Wavelet Pattern Method. Sensors 2025, 25, 5455. https://doi.org/10.3390/s25175455
Zhuravlev MO, Runnova AE, Mironov SA, Zhuravleva JA, Kiselev AR. Continuous Estimation of Heart Rate Variability from Electrocardiogram and Photoplethysmogram Signals with Oscillatory Wavelet Pattern Method. Sensors. 2025; 25(17):5455. https://doi.org/10.3390/s25175455
Chicago/Turabian StyleZhuravlev, Maksim O., Anastasiya E. Runnova, Sergei A. Mironov, Julia A. Zhuravleva, and Anton R. Kiselev. 2025. "Continuous Estimation of Heart Rate Variability from Electrocardiogram and Photoplethysmogram Signals with Oscillatory Wavelet Pattern Method" Sensors 25, no. 17: 5455. https://doi.org/10.3390/s25175455
APA StyleZhuravlev, M. O., Runnova, A. E., Mironov, S. A., Zhuravleva, J. A., & Kiselev, A. R. (2025). Continuous Estimation of Heart Rate Variability from Electrocardiogram and Photoplethysmogram Signals with Oscillatory Wavelet Pattern Method. Sensors, 25(17), 5455. https://doi.org/10.3390/s25175455