Development of a 96-Well Plate Dithiothreitol Method for the Colorimetric Determination of Nickel Ions in Water Samples
Abstract
Highlights
- A 96-well plate colorimetric method was developed for the quantification of Ni(II) with dithiothreitol (DTT).
- Sensitive determination of Ni(II) based on the colorimetric alteration of the Ni(II)-DTT reaction was achieved.
- A simple detection system, primarily based on a smartphone, was achieved.
- The proposed method was applied to surface water samples with sufficient sensitivity.
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Apparatus
2.3. Experimental Procedure
2.4. Comparison UV-Vis Method
2.5. Real Samples
3. Results and Discussion
3.1. Effect of pH
3.2. Effect of DTT Concentration
3.3. Effect of Reaction Time
3.4. Effect of Ionic Strength
3.5. Method Validation
3.5.1. Selectivity
3.5.2. Figures of Merit
3.6. Application of Real Samples
3.7. Comparison with UV-Vis Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DTT | Dithiothreitol |
FAAS | Flame Atomic Absorption Spectrometry |
FIA-FAAS | Flow Injection Analysis–Flame Atomic Absorption Spectrometry |
GFAAS | Graphite Furnace Atomic Absorption Spectrometry |
ICP-AES | Inductively Coupled Plasma Atomic Emission Spectrometry |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
AdSV | Adsorptive Stripping Voltammetry |
XRF | X-ray Fluorescence |
UV-Vis | Ultra Violet–Visible |
JPEG | Joint Photographic Experts Group |
RGB | Red Green Blue |
References
- Lu, J.; Yuan, Z.; Wang, N.; Lu, S.; Meng, Q.; Liu, J. Selective surface magnetization of pentlandite with magnetite and magnetic separation. Powder Technol. 2017, 317, 162–170. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Proenza, J.A.; Galí, S.; García-Casco, A.; Tauler, E.; Lewis, J.F.; Longo, F. Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol. Rev. 2014, 58, 91–109. [Google Scholar] [CrossRef]
- Amer, M.; Masri, J.; Dababat, A.; Sajjad, U.; Hamid, K. Electric vehicles: Battery technologies, charging standards, AI communications, challenges, and future directions. Energy Convers. Manag. X 2024, 24, 100751. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ahmad, T.; Zafar, A.; Alrefaei, A.F.; Ashfaq, A.; Akhtar, S.; Mahpara, S.; Mehmood, N.; Ugulu, I. Evaluation of nickel toxicity and potential health implications of agriculturally diversely irrigated wheat crop varieties. Arab. J. Chem. 2023, 16, 104934. [Google Scholar] [CrossRef]
- Salehi, F.; Esmaeilbeigi, M.; Kazemi, A.; Sharafi, S.; Sahebi, Z.; Asl, A.G. Spatial health risk assessments of nickel in the groundwater sources of a mining-impacted area. Sci. Rep. 2024, 14, 11017. [Google Scholar] [CrossRef]
- Kumar, U.; Kumar, I.; Singh, P.K.; Dwivedi, A.; Singh, P.; Mishra, S.; Seth, C.S.; Sharma, R.K. Nickel contamination in terrestrial ecosystems: Insights into impacts, phytotoxicity mechanisms, and remediation technologies. Rev. Environ. Contam. Toxicol. 2025, 263, 2. [Google Scholar] [CrossRef]
- Rizwan, M.; Usman, K.; Alsafran, M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. Chemosphere 2024, 357, 14202. [Google Scholar] [CrossRef] [PubMed]
- Carai, M.A.M.; Vacca, G.; Serra, S.; Colombo, G.; Froestl, W.; Gessa, G.L. Suppression of GABAB receptor function in vivo by disulfide reducing agent, dl-dithiothreitol (DTT). Psychopharmacology 2004, 174, 283–290. [Google Scholar] [CrossRef]
- Alliegro, M.C. Effects of dithiothreitol on protein activity unrelated to thiol–disulfide exchange: For consideration in the analysis of protein function with Cleland’s reagent. Anal. Biochem. 2000, 282, 102–106. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Marciniak, B.; Bobrowski, K. Properties of disulfide radical anions and their reactions in chemistry and biology. Redox Biochem. Chem. 2025, 11, 100046. [Google Scholar] [CrossRef]
- Krȩżel, A.; Leśniak, W.; Jeżowska-Bojczuk, M.; Młynarz, P.; Brasuñ, J.; Kozłowski, H.; Bal, W. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J. Inorg. Biochem. 2001, 84, 77–88. [Google Scholar] [CrossRef]
- Ding, X.; Hua, Y.; Chen, Y.; Zhang, C.; Kong, X. Heavy metal complexation of thiol-containing peptides from soy glycinin hydrolysates. Int. J. Mol. Sci. 2015, 16, 8040–8058. [Google Scholar] [CrossRef] [PubMed]
- Anthemidis, A.N.; Zachariadis, G.A.; Stratis, J.A. On-line preconcentration and determination of nickel and zinc in natural water samples by flow injection–flame atomic absorption spectrometry using PTFE-turnings for column packing. Inter. J. Environ. Anal. Chem. 2010, 90, 127–136. [Google Scholar] [CrossRef]
- Efe, E.; Imamoglu, M. Solid-phase extraction (SPE) of Ni(II), Cd(II) and Pb(II) ions using pyromellitic dianhydride functionalized silica gel prior to flame atomic absorption spectrometric determination. Desalin. Water Treat. 2024, 317, 100158. [Google Scholar] [CrossRef]
- Soylak, M.; Narin, I.; Dogan, M. Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column. Anal. Lett. 1997, 30, 2801–2810. [Google Scholar] [CrossRef]
- Tsogas, G.Z.; Giokas, D.L.; Paleologos, E.K.; Vlessidis, A.G.; Evmiridis, N.P. Single-step coacervate-mediated preconcentration of metals andmetal-chelates in supramolecular vesicular surfactant assemblies anddetermination by flame atomic absorption spectrometry. Anal. Chim. Acta 2005, 537, 239–248. [Google Scholar] [CrossRef]
- Giokas, D.L.; Paleologos, E.K.; Tzouwara-Karayanni, S.M.; Karayannis, M.I. Single-sample cloud point determination of iron, cobalt and nickel by flow injection analysis flame atomic absorption spectrometry-application to real samples and certified reference materials. J. Anal. At. Spectrom. 2001, 16, 521–526. [Google Scholar] [CrossRef]
- Khazaeli, E.; Haddadi, H.; Zargar, B.; Hatamie, A.; Semnani, A. Ni(II) analysis in food and environmental samples by liquid-liquid microextraction combined with electro-thermal atomic absorption spectrometry. Microchem. J. 2017, 133, 311–319. [Google Scholar] [CrossRef]
- Taher, M.A.; Mazaheri, L.; Ashkenani, H.; Mohadesi, A.; Afzali, D. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes. J. AOAC Int. 2014, 97, 225–231. [Google Scholar] [CrossRef]
- Scaccia, S. Determination of traces of Ni in Li2CO3/Na2CO3 melts by graphite furnace atomic absorption spectrometry. Talanta 2005, 66, 805–808. [Google Scholar] [CrossRef]
- Han, Q.; Huo, Y.; Yang, L.; Yang, X.; He, Y.; Wu, J. Determination of trace nickel in water samples by graphite furnace atomic absorption spectrometry after mixed micelle-mediated cloud point extraction. Molecules 2018, 23, 2597. [Google Scholar] [CrossRef]
- Sabarudin, A.; Noguchi, O.; Oshima, M.; Higuchi, K.; Motomizu, S. Application of chitosan functionalized with 3,4-dihydroxy benzoic acid moiety for on-line preconcentration and determination of trace elements in water samples. Microchim. Acta 2007, 159, 341–348. [Google Scholar] [CrossRef]
- Ioannidou, M.D.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta 2005, 65, 92–97. [Google Scholar] [CrossRef]
- Voica, C.; Nechita, C.; Iordache, A.M.; Roba, C.; Zgavarogea, R.; Ionete, R.E. ICP-MS assessment of essential and toxic trace elements in foodstuffs with different geographic origins available in romanian supermarkets. Molecules 2021, 26, 7081. [Google Scholar] [CrossRef] [PubMed]
- Veguería, S.F.J.; Godoy, J.M.; de Campos, R.C.; Gonçalves, R.A. Trace element determination in seawater by ICP-MS using online, offline and bath procedures of preconcentration and matrix elimination. Microchem. J. 2013, 106, 121–128. [Google Scholar] [CrossRef]
- Padilla, V.; Serrano, N.; Díaz-Cruz, J.M. Determination of trace levels of Nickel(II) by adsorptive stripping voltammetry using a disposable and low-cost carbon screen-printed electrode. Chemosensors 2021, 9, 94. [Google Scholar] [CrossRef]
- Pokpas, K.; Jahed, N.; Baker, P.G.; Iwuoha, E.I. Complexation-based detection of nickel(II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry. Sensors 2017, 17, 1711. [Google Scholar] [CrossRef]
- Godja, N.; Assadollahi, S.; Hutter, M.; Mehrabi, P.; Khajehmeymandi, N.; Schalkhammer, T.; Munteanu, F.D. Flexible screen-printed gold electrode array on polyimide/PET for nickel(II) electrochemistry and sensing. Sensors 2025, 25, 3959. [Google Scholar] [CrossRef]
- Eksperiandova, L.P.; Makarovska, Y.N.; Blank, A.B. Determination of small quantities of heavy metals in water-soluble salts and natural water by X-ray fluorescence. Anal. Chim. Acta 1998, 371, 105–108. [Google Scholar] [CrossRef]
- Rajabi, H.R.; Razmpour, S. Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni2+ ion in water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 45–52. [Google Scholar] [CrossRef]
- Shrivas, K.; Maji, P.; Dewangan, K. Onsite-detection of barium and nickel from river, pond and tap water samples using gold nanoparticles as a chemical sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 630–636. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Nam, Y.-S.; Lee, H.-J.; Lee, Y.; Lee, K.-B. Colorimetric probe for Ni2+ based on shape transformation of triangular silver nanoprisms upon H2O2 etching. Sens. Actuators B Chem. 2019, 300, 127045. [Google Scholar] [CrossRef]
- Kamnoet, P.; Aeungmaitrepirom, W.; Menger, R.F.; Henry, C.S. Highly selective simultaneous determination of Cu(II), Co(II), Ni(II), Hg(II), and Mn(II) in water samples using microfluidic paper-based analytical devices. Analyst 2021, 146, 2229–2239. [Google Scholar] [CrossRef]
- Wehbe, F.D.N.; da Silva, D.M.; Batista, A.D.; Petruci, J.F.d.S. Heat-based procedure for detectability enhancement of colorimetric paper-based spot tests. Microchem. J. 2022, 177, 107320. [Google Scholar] [CrossRef]
- Bizirtsakis, P.A.; Tarara, M.; Tsiasioti, A.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a paper-based analytical method for the selective colorimetric determination of bismuth in water samples. Chemosensors 2022, 10, 265. [Google Scholar] [CrossRef]
- Savvaki, G.N.A.; Tarara, M.; Tsogas, G.Z. Instrument-free, novel colorimetric speciation of hexavalent chromium in natural waters using a flatbed scanner. Anal. Lett. 2025, 1–19. [Google Scholar] [CrossRef]
- Onoa, B.; Moreno, V. Nickel(II) and copper(II) ± L-cysteine, L-methionine, L-tryptophan-nucleotide ternary complexes. Transition Met. Chem. 1998, 23, 485–490. [Google Scholar] [CrossRef]
- Bermejo-Velasco, D.; Azémar, A.; Oommen, O.P.; Hilborn, J.; Varghese, O.P. Modulating thiol pKa promotes disulfide formation at physiological pH: An elegant strategy to design disulfide cross-linked hyaluronic acid hydrogels. Biomacromolecules 2019, 20, 1412–1420. [Google Scholar] [CrossRef]
- Fukada, H.; Takahashi, K. Calorimetric study of the oxidation of dithiothreitol. J. Biochem. 1980, 87, 1105–1110. [Google Scholar] [CrossRef]
- Stevens, R.; Stevens, L.; Price, N.C. The stabilities of various thiol compounds used in protein purifications. Biochem. Educ. 1983, 11, 70. [Google Scholar] [CrossRef]
Ions | Concentration (mg L−1) | Ions | Concentration (mg L−1) |
---|---|---|---|
Na+ | 50 | NO3− | 50 |
Ca2+ | 100 | HCO3− | 250 |
Mg2+ | 50 | SO42− | 25 |
K+ | 25 | Cl− | 50 |
Cu2+ | 25 | Mn2+ | 25 |
Zn2+ | 25 | Co2+ | 5.0 |
Fe3+ | 5.0 | Cr3+ | 10 |
Pb2+ | 25 | Cd2+ | 25 |
Water Samples | Spiked (mg L−1) | Found (mg L−1) | Recovery (±Standard Deviation, %, n = 3) |
---|---|---|---|
Bottled 1 | 5.87 29.3 | 5.63 27.9 | 95.9 ± 5.3 95.2 ± 4.1 |
Bottled 2 | 5.87 29.3 | 5.05 27.1 | 86.0 ± 4.0 92.5 ± 6.6 |
Bottled 3 | 5.87 29.3 | 4.99 26.1 | 85.0 ± 3.5 89.1 ± 6.0 |
Bottled 4 | 5.87 29.3 | 5.46 27.1 | 93.0 ± 5.5 92.5 ± 6.1 |
Bottled 5 | 5.87 29.3 | 4.87 29.1 | 83.0 ± 6.5 99.3 ± 2.1 |
Bottled 6 | 5.87 29.3 | 5.05 30.2 | 86.0 ± 3.8 103.1 ± 6.5 |
River 1 | 5.87 29.3 | 5.52 26.3 | 94.0 ± 3.5 89.8 ± 3.1 |
River 2 | 5.87 29.3 | 5.58 25.8 | 95.1 ± 7.4 88.0 ± 2.1 |
Sea | 5.87 29.3 | 4.98 26.5 | 84.8 ± 0.7 90.4 ± 7.0 |
Tap | 5.87 29.3 | 5.12 30.8 | 87.2 ± 3.2 105.1 ± 6.0 |
Samples | Added (mg L−1) | Proposed Method (mg L−1) | UV-Vis Method (mg L−1) | % Recovery (Value Found/Value Added × 100%) | % Recovery (Value Proposed Method/Value UV-Vis × 100%) |
---|---|---|---|---|---|
1 | 8.0 | 8.4 | 8.8 | 105.0 | 94.9 |
2 | 8.0 | 8.0 | 8.5 | 100.0 | 93.6 |
3 | 8.0 | 8.2 | 8.7 | 102.5 | 94.3 |
4 | 9.5 | 9.9 | 9.2 | 104.2 | 108.0 |
5 | 9.5 | 9.5 | 9.1 | 100.0 | 104.5 |
6 | 9.5 | 9.4 | 9.0 | 98.9 | 104.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikas, G.N.; Tarara, M.; Tsogas, G.Z. Development of a 96-Well Plate Dithiothreitol Method for the Colorimetric Determination of Nickel Ions in Water Samples. Sensors 2025, 25, 5361. https://doi.org/10.3390/s25175361
Nikas GN, Tarara M, Tsogas GZ. Development of a 96-Well Plate Dithiothreitol Method for the Colorimetric Determination of Nickel Ions in Water Samples. Sensors. 2025; 25(17):5361. https://doi.org/10.3390/s25175361
Chicago/Turabian StyleNikas, George N., Maria Tarara, and George Z. Tsogas. 2025. "Development of a 96-Well Plate Dithiothreitol Method for the Colorimetric Determination of Nickel Ions in Water Samples" Sensors 25, no. 17: 5361. https://doi.org/10.3390/s25175361
APA StyleNikas, G. N., Tarara, M., & Tsogas, G. Z. (2025). Development of a 96-Well Plate Dithiothreitol Method for the Colorimetric Determination of Nickel Ions in Water Samples. Sensors, 25(17), 5361. https://doi.org/10.3390/s25175361