Buzzing with Intelligence: A Systematic Review of Smart Beehive Technologies
Abstract
1. Introduction
- RQ1: What types of sensing modalities are most commonly used in smart beehive systems?
- RQ2: In which application domains are smart technologies for beehives being deployed, and how have these focal areas evolved over time?
- RQ3: Which data analysis and machine learning methods have been applied, and how prevalent are advanced techniques in comparison to classical approaches?
- RQ4: What technical and practical limitations are reported across these studies?
- RQ5: What publicly available datasets exist for smart-beehive research, what data modalities do they include, and how are these datasets labeled and used to develop or evaluate machine learning models?
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Data Extraction and Categorization
- Environmental/Weather Sensors (e.g., temperature, humidity, air pressure; these include sensors monitoring conditions both inside the hive (internal climate) and in its surroundings).
- Acoustic/Vibration Sensors (e.g., microphones, piezoelectric sensors).
- Imaging Sensors (e.g., cameras, optical counters, thermal imaging).
- Hive Structural Sensors (e.g., weight/load cells, strain gauges).
- Motion/Orientation Sensors (e.g., accelerometers, gyroscopes).
- Air Composition Sensors (e.g., CO2, VOC, O2).
- Bee Activity Counters (e.g., infrared gates, tags).
- Short-Range Wireless (e.g., Zigbee, Wi-Fi, Bluetooth).
- Long-Range Wireless (e.g., LoRa, NB-IoT, Sigfox, GSM).
- Wired Communication (e.g., Ethernet, PowerLine).
- Statistical and Time-Series Analysis (e.g., regression, correlation, ARIMA, VAR).
- Feature Extraction and Signal Processing (e.g., FFT, MFCC, DWT).
- Classical Machine Learning (e.g., SVM, Random Forest, k-NN, Naive Bayes).
- Deep Learning and Neural Networks (e.g., CNN, LSTM, Transformer-based models).
- Computer Vision and Image Analysis (e.g., contour detection, image segmentation)
- Unsupervised Learning and Anomaly Detection (e.g., clustering, outlier detection).
- Rule-Based Systems and Thresholding (e.g., thresholding (T1, T2, T3, T*), Custom swarming algorithm).
- Data Fusion and Ensemble Methods (e.g., weighted multi-criteria aggregation algorithm, Majority voting).
- Expert Systems and Fuzzy Logic (e.g., Fuzzy-stranded-NN, fuzzy logic model (FLM)).
- Sensor Analysis/Domain-Specific (e.g., BFCI formula: (weather scoring)).
- Monitoring: Real-time reporting of hive metrics.
- Behavior Detection: Recognizing bee behaviors.
- Health Assessment: Detecting disease or colony vitality issues.
- Prediction/Forecasting: Estimating future events like swarming or yield.
- Optimization/Decision Support: Guiding interventions and hive management.
- System/IoT Development: Engineering and infrastructure for sensing platforms.
- Threat Detection: Identifying predators, theft, or environmental hazards.
3. Results and Discussion
3.1. Corpus and Structured Summary of Included Studies
3.2. Overview
3.2.1. Sensors in Smart-Beehive Systems
3.2.2. Analytical Techniques and Algorithm Performance
3.2.3. Comparative Assessment of Sensors and Algorithms
3.3. Meta-Analysis of Publications
3.3.1. Sensor Usage by Research Objectives
3.3.2. Sensor Co-Occurrence Patterns
3.3.3. Sensor–Model Co-Occurrence Patterns
3.3.4. Sensor–Communication Co-Occurrence Patterns
3.4. Practical and Technical Limitations
4. Publicly-Available Datasets for Smart-Beehive Research
4.1. Acoustic Datasets
4.2. Visual Datasets
- A detection dataset with 7200 frames (1920 × 1080 resolution) for bee detection/ segmentation.
- A segmentation dataset with 2300 cropped bee images labeled with a triangle shape for direction vector estimation.
- A pose directory containing 400 frames from eight beehive entrances, where annotations include two points (head and stinger, or front and back if partially visible) for bee direction estimation.
- A ramp detection dataset with 156 images, annotated with bounding box coordinates and four keypoints.
- Tracking and behavior datasets consist of annotated MP4 files with bee tracks during foraging, defense, fanning, and washboarding activities within the entrance zone.
4.3. Environmental and Multimodal Datasets
- Environmental/Physiological data, such as hive weight obtained from automatic logging by a hive scale, and adult bee strength from weight assessment of combs.
- Visual data, including data on brood development and food provision from image analysis of combs, and forager activity from automatic video recordings and image analysis by a bee counter.
- Observational and management logs, detailing colony management actions (e.g., input/output of materials, queen loss, swarming, clinical signs) and observations of honey bee waggle dances (orientation and direction).
- Chemical and biological analysis results, including laboratory analyses of pollen, pesticide residues, and parasites/pathogens.
- Geographical information for sites and polygons, including UTM coordinates.
4.4. Summary
5. Discussion and Future Work
5.1. Sensor Modalities and Deployment Gaps
5.2. Novel Opportunity: Signal-Layer Metrics as Passive Sensors
5.3. Data Processing and Machine Learning Approaches
5.4. Deployment and Reproducibility Challenges
5.5. Future Research Directions
- Design and deploy multimodal sensing platforms that combine multiple sensor types, and communication-layer signals (RSSI, SNR) for holistic hive monitoring.
- Explore fluctuations in signal strength using internal vs. external LoRaWAN nodes as a novel passive anomaly detection method.
- Develop lightweight, interpretable TinyML models capable of real-time inference on embedded microcontrollers using features like sound patterns, temperature, and RSSI fluctuations.
- Standardize data annotation, sharing, and benchmarking protocols through the creation of open-access, multi-season, multi-location datasets.
- Investigate privacy-preserving distributed learning techniques such as federated learning to enable collaborative model training across apiaries.
- Foster stronger collaboration with domain experts (experienced beekeepers and entomologists) to ensure smart beehive solutions address practical beekeeping needs and scientific knowledge gaps. This includes emphasizing user-friendly designs, cost-effectiveness, and validation of technologies in real-world apiary conditions.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Summary of Included Studies
PUBLICATION | Sensor/Data Type | Communication Type | Method/Algorithm |
---|---|---|---|
Henry et al. [1] | Temperature, Humidity, Microphone | WiFi, Ethernet | – |
Ochoa et al. [3] | Temperature, Humidity, Weight scale | WiFi | – |
Khairul et al. [4] | Temperature, Humidity, Weight scale | WiFi | – |
Zabasta et al. [5] | Temperature, Humidity, Weight scale, Camera | WiFi, GSM/GPRS, RF | – |
Komasilovs et al. [6] | Temperature, Weight scale, Microphone | WiFi, GSM/GPRS | Fast Fourier Transform (FFT), Data aggregation techniques (AVG, COUNT) |
Zacepins et al. [2] | Temperature | WiFi | Custom swarming algorithm |
Sánchez et al. [7] | Temperature, Humidity | – | – |
Li et al. [9] | Temperature, Humidity | – | ANOVA |
Kale et al. [10] | Camera | – | Gaussian Mixture Models (GMM), Cascade classification, Optical flow |
Gil-Lebrero et al. [8] | Temperature, Humidity, Weight scale | ZigBee | – |
Kviesis et al. [11] | Temperature | – | Neural network |
Rybin et al. [12] | Temperature, Humidity, Weight scale, Microphone | RF | Wavelet transformation, Neural network |
Edwards-Murphy et al. [13] | Temperature, Humidity, CO2, O2, NO2, Pollutant levels, Accelerometer | GSM/GPRS, ZigBee | Custom temperature and humidity algorithm and CO2 |
Edwards-Murphy et al. [14] | Temperature, Humidity, CO2, O2, NO2, Pollutant levels, Accelerometer | GSM/GPRS, ZigBee | Decision Trees (C4.5), Custom temperature and humidity algorithm and CO2 |
Kridi et al. [15] | Temperature | ZigBee | k-means clustering |
Edwards-Murphy et al. [16] | Microphone, Accelerometer, Infrared camera, Thermal camera | GSM/GPRS, ZigBee | – |
Edwards-Murphy et al. [22] | Temperature, Humidity, CO2, O2, NO2, Pollutant levels, Accelerometer | GSM/GPRS, ZigBee | – |
Žgank [43] | Microphone | WiFi, GSM/GPRS | Hidden Markov Models (HMM), Mel-Frequency Cepstral Coefficients (MFCC) |
Marstaller et al. [75] | Camera | – | Neural network |
Kulyukin, et al. [45] | Temperature, Microphone | – | k-means clustering, Non-Uniform Fast Fourier Transform(NFFT), Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Neural network, Support vector machine (SVM), Logistic Regression, Random Forest |
Kulyukin, et al. [44] | Temperature, Microphone, Camera | – | Neural network, Support vector machine (SVM), Random Forest |
Liu, et al. [23] | Temperature, Solar radiation, Wind speed and direction, Weight scale | – | – |
Tu, et al. [46] | Camera | – | k-means clustering, Linear regression |
Szczurek, et al. [76] | Gas sensor | – | ANOVA, Tukey’s test |
STRUYE, et al. [47] | Counter | – | asynchronous sequential algorithm |
Ramsey, et al. [48] | Accelerometer | – | – |
Andrijević et al. [109] | Temperature, Gas sensors (TGS serise from Figaro Eng), Solar radiation, UV index, IR inensity, Rain detection, Wind speed and direction, Humidity, Microphone, Air Quality, Counter | GSM/GPRS | LSTM neural networks, Facebook Prophet, ARIMA |
Voudiotis et al. [110] | Camera | LoRaWAN, WiFi | CNN |
Mrozek et al. [77] | Camera | GSM/GPRS | CNN |
Aydin et al. [24] | Temperature, Air Pressure, Gas sensors (TGS serise from Figaro Eng), Humidity, Weight scale | WiFi, ZigBee | – |
Robustillo et al. [111] | Temperature, Air Pressure, Solar radiation, Rain detection, Wind speed and direction, Humidity, Pollutant levels | – | Vector Autoregressive (VAR), Dynamic Linear Model (DLM), Generalized Additive Model (GAM) |
Hong et al. [25] | Temperature, Humidity, Weight scale, Microphone, Counter | WiFi | – |
Kviesis et al. [78] | Temperature | – | fuzzy logic model (FLM) |
Braga et al. [79] | Temperature, Dew point, Solar radiation, Rain detection, Wind speed and direction, Weight scale | Bluetooth | Neural network, Random Forest, k-nearest neighbors (KNN) |
Li et al. [80] | Temperature, Humidity, Weight scale, Microphone, Counter | WiFi, GSM/GPRS | Data correlation |
Imoize et al. [26] | Temperature, Microphone | WiFi, GSM/GPRS | Signal patterns |
Cecchi et al. [27] | Temperature, Humidity, CO2, Weight scale, Microphone | WiFi, Ethernet | Signal patterns |
Kaplan et al. [81] | Camera | – | VGG19, GoogLeNet |
Zacepins et al. [28] | Temperature, Humidity, Weight scale | WiFi | event detection via thresholds and time-interval-based rules |
Bermig et al. [49] | Temperature, Humidity, Camera, Counter | – | Manual video inspection and Robber’s test |
Braga et al. [112] | Temperature, Humidity, Weight scale | – | k-means clustering, Random Forest, k-nearest neighbors (KNN) |
Alves et al. [82] | Camera | – | CNNs (MobileNet, DenseNet, Inception, ResNet, etc.), U-Net for segmentation, CHT for detection, Naive Bayes (NB) |
Ngo et al. [50] | Temperature, Light illuminance, Rain detection, Wind speed and direction, Humidity, Camera | WiFi | Yolov3-tiny, Majority voting, Object tracking |
Sevin et al. [83] | Camera | WiFi | Shape and color-based image filtering (bee and mite templates), 3-stage detection process |
Kim et al. [84] | Microphone | – | Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Random Forest, XGBoost (gradient boosting), VGG19, Shallow CNN, Grad- CAM, CQT (Constant Q transform) |
Catania et al. [29] | Temperature, Wind speed and direction, Humidity, Weight scale | Bluetooth | statistical correlation + environmental trend analysis |
Braga et al. [113] | Temperature, Humidity, Weight scale, Microphone | – | LSTM neural networks, AdamX optimizer |
Schurischuster et al. [85] | Camera | – | AlexNet, ResNet, Deeplabv3 (semantic segmentation) |
Williams, et al. [51] | Camera, Thermal camera | – | Gaussian Mixture Models (GMM), Neural network, Support vector machine (SVM), Random Forest, k-nearest neighbors (KNN) |
Žgank [52] | Microphone | WiFi, GSM/GPRS | Hidden Markov Models (HMM), Gaussian Mixture Models (GMM), Linear Predictive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCC) |
Rodias et al. [125] | Temperature, Humidity, GPS module, LIDAR | – | BFCI formula: (weather scoring); |
Libal et al. [53] | Microphone | – | Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Linear Discriminant Analysis (LDA), Random Forest, k-nearest neighbors (KNN) |
Chien et al. [136] | Camera | WiFi | YOLOv7 |
Penaloza-Aponte et al. [54] | Tags, Camera | WiFi | – |
Degenfellner et al. [86] | Weight scale, Enviromental data | GSM/GPRS | Facebook Prophet, Similar Trend Monitoring (STM), Similar Trend Monitoring (STM).1, Principal Component Analysis (PCA), MM-Regression |
Kongsilp et al. [55] | Camera | – | Kalman filter, Hungarian algorithm, Mask R-CNN |
Divasón et al. [87] | Camera | – | Faster R-CNN with ResNet18/50/152 + FPN backbones, DeblurGAN |
Chowdhury et al. [56] | Camera | – | YOLOv8 |
Libal et al. [114] | Microphone | – | Mel-Frequency Cepstral Coefficients (MFCC), LASSO regression, Autoencoder neural networks |
Bairo et al. [30] | Weight scale | GSM/GPRS | Custom calibration model using linear regression on resistance-voltage-weight relationship |
Camayo et al. [88] | Temperature, Humidity, CO2, TVOC | WiFi | Neural network, Random Forest, Decision Trees (C4.5), Weighted multi-criteria aggregation algorithm, Data aggregation techniques (AVG, COUNT), XGBoost (gradient boosting) |
Liyanage et al. [126] | Temperature, Rain detection, Humidity, Air Quality | WiFi | event detection via thresholds and time-interval-based rules |
Narcia-Macias et al. [89] | Temperature, Humidity, Camera | – | YOLOv7 |
Minaud et al. [115] | Temperature | – | Generalized Additive Model (GAM), event detection via thresholds and time-interval-based rules, RP_median thermal index, GLM validations |
Garcao et al. [90] | Temperature, Humidity, Microphone | WiFi | CNN, Logistic Regression, k-nearest neighbors (KNN), Principal Component Analysis (PCA), YAMNET, VGGish, Feedforward neural network (FNN), Kendall’s tau |
Pérez-Delgado et al. [140] | Camera | – | CNN |
Kamga et al. [116] | Enviromental data, Local land cover quality index (LLCQI), | – | ANFIS-SC (Adaptive Neuro-Fuzzy Inference System + Subtractive Clustering) |
Kontogiannis et al. [91] | Temperature, Humidity, Microphone | WiFi | CNNs (VGG-16/19, ResNet-18/50, WideResNet, Inception), Fuzzy-stranded-NN |
Smerkol et al. [127] | Temperature, Air Pressure, Rain detection, Humidity, Weight scale | NBIoT | Support vector machine (SVM), Random Forest, Decision Trees (C4.5), ADABOOST, Gradient Boost |
Lei et al. [57] | Camera | – | YOLOv8m, OC-SORT, BOX-METHOD |
Nguyen et al. [58] | Camera | – | CNN, YOLOv5, Faster RCNN, Focal Loss, Overlap Sampler |
Robles-Guerrero et al. [92] | Microphone | – | CNNs: EfficientNet, ConvNeXt, MobileNet, ShuffleNet, ResNet18, etc. |
Hall et al. [137] | Microphone, Camera | – | Principal Component Analysis (PCA), Discriminant Function Analysis (DFA), 2D Fourier Transform (2DFT), classification via DF-space projection |
Bono et al. [117] | Temperature, UV index, Rain detection, Wind speed and direction, Humidity, Weight scale, Microphone | GSM/GPRS | Vector Autoregressive (VAR), impulse response functions (IRF), Granger causality tests |
Ramirez-Diaz et al. [118] | Enviromental data | – | Random Forest, Decision Trees (C4.5), XGBoost (gradient boosting), Boruta FS |
Ho et al. [59] | Microphone | – | Fast Fourier Transform (FFT), Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Logistic Regression, Random Forest, Extra Trees (ET), k-nearest neighbors (KNN), CQT (Constant Q transform), Spectral Contrast |
Várkonyi et al. [119] | Microphone | – | Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Spectral Centroid, Zero Crossing Rate, Histogram-based Gradient Boosting + GA-based feature selection (regression) |
Karan et al. [31] | Temperature, Light illuminance, Humidity, Weight scale, Microphone, Accelerometer | WiFi | event detection via thresholds and time-interval-based rules |
Lee et al. [133] | Temperature, Humidity, CO2, O2, Weight scale, Counter | IR, power line communication (PLC) | – |
Robustillo et al. [120] | Temperature, Air Pressure, Light illuminance, Rain detection, Wind speed and direction, Humidity, particulate matter, Weight scale | – | Vector Autoregressive (VAR), Dynamic Factor Analysis (DFA), ombining data from multiple time series (CMTS), eneral multivariate auto-regressive state-space (MARSG), Vector Error Correction (VEC) |
Sledevič et al. [64] | Camera | – | YOLOv8-pose (nano, medium, large) |
Otesbelgue et al. [93] | Temperature, Humidity, Microphone | – | Support vector machine (SVM), Random Forest, k-nearest neighbors (KNN), multilayer perceptron (MLP), extreme learning machine (ELM) |
Libal et al. [61] | Microphone | – | Mel-Frequency Cepstral Coefficients (MFCC), gammatone cepstral coefficients (GTCC), BURG algorithm, MUltiple SIgnal Classification (MUSIC), Autoencoder, thresholding (T1, T2, T3, T*), empirical Bayes classifier (ML thresholding) |
Kulyukin et al. [121] | Temperature, Weight scale, Camera | – | ANN, CNN, LSTM neural networks, ARIMA |
Micheli et al. [62] | Camera | – | Gaussian derivative (GDER), Gray-level local variance (GLLV), Steerable filters (SFIL), Tenengrad (TENG), and Tenengrad variance (TENV), t-distributed Stochastic Neighbor Embedding (t-SNE) |
Dickson et al. [63] | Camera | – | Kalman filter, YOLOv8, Optical Flow + polynomial regression |
Gaikwad et al. [32] | Temperature, Humidity, Weight scale | – | event detection via thresholds and time-interval-based rules |
Sledevič et al. [60] | Camera | – | YOLOv8m + YOLOv8n-seg for detection & direction, rule-based behavior detection for 4 patterns (foraging, fanning, defense, washboarding), BoT-SORT, ByteTrack, StrongSORT, DeepOC-SORT, OC-SORT tracking algorithms |
Luz et al. [94] | Microphone | – | Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Random Forest, multilayer perceptron (MLP), VGG16/ResNet50/MobileNet/YOLO, Mel spectrograms |
Iqbal et al. [65] | Microphone | – | Mel-Frequency Cepstral Coefficients (MFCC), CNN, LSTM neural networks, Support vector machine (SVM), k-nearest neighbors (KNN), Naive Bayes (NB), Mel spectrograms, transformer mode |
De Simone et al. [95] | Microphone | LoRaWAN | Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), TinyML neural network (3-layer NN) |
Newton et al. [96] | Temperature, Humidity, CO2, Weight scale, Vibration | – | analysis based on signal tracking, vibration spectrograms, and time-series trends |
Zheng et al. [33] | Temperature, Humidity, Microphone, Camera | WiFi | YOLOv5, DeepSORT, rule-based bee entry/exit/count logic |
Alifieris et al. [134] | Temperature, Air Pressure, Humidity, Weight scale, Enviromental data, Microphone | LoRaWAN, WiFi, GSM/GPRS | rule-based journaling, checklist mapping, data stream aggregation |
Janetzky et al. [66] | Microphone | – | Random Forest, Isolation Forrest, Principal Component Analysis (PCA), Autoencoder neural networks, Spectrograms |
Rathore et al. [97] | Camera | – | CLAHE (contrast enhancement), Bilateral filter, Hough Circle Transform |
Borgianni et al. [98] | Microphone | – | DenseNet121, ResNet50, InceptionV3, VGG16; Federated Averaging (FedAvg), CNN-based DNNs (spectrogram input) |
Kulyukin et al. [122] | Electromgnetic radiation (EMR), Air Pressure, Solar radiation, Rain detection, Wind speed and direction, Humidity, Camera | – | Support vector machine (SVM), Linear regression, Random Forest |
Várkonyi et al. [67] | Microphone | – | Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), MFCC differential coefficients (MFCC delta), CNN, LSTM neural networks, Spectral Centroid, Zero Crossing Rate, DANi NF method, Chroma |
Williams et al. [68] | Camera, Doppler radar counter | – | Linear Predictive Coding (LPC), Support vector machine (SVM), DenseNet, Log Area Ratios (LAR) |
Mahajan et al. [99] | Microphone, Camera | – | Mel-Frequency Cepstral Coefficients (MFCC), YOLOv7, YOLOv8, Mel spectrograms, Single Shot Multibox Detector (SSD), Detection Transformer (DETR), Dense NN (2-layer MLP on MFCC+Mel features) |
Cota et al. [34] | Temperature, Lid microswitch, Humidity, Weight scale, Microphone, GPS module | WiFi | event detection via thresholds and time-interval-based rules |
Vallone et al. [132] | Temperature, Humidity, Weight scale, Microphone | GSM/GPRS | Rule-based trend evaluation for honey production and swarm behavior prediction |
Abdollahi et al. [35] | Microphone | – | Short-Time Energy, WebRTC VAD, CRDNN |
Vit et al. [128] | Camera | – | CNNs (VGG19, DenseNet121, EfficientNetV2S, ResNet50, InceptionV3) |
Kulyukin et al. [69] | Camera | WiFi | YOLOv3, YOLOv4-tiny, YOLOv7-tiny, OmniBeeM |
Jeon et al. [138] | Camera | GSM/GPRS | YOLOv5s |
Wu et al. [123] | Tags, Dew point, Air Pressure, Solar radiation, UV index, Rain detection, Wind speed and direction, Humidity | – | LSTM neural networks, gated recurrent unit (GRU) |
Safie et al. [70] | Camera | – | YOLOv3, SqueezeNet (18-layer CNN), DarkNet-53 (53-layer CNN) |
Milovanovic et al. [36] | 64 IR opto-reflective sensors | WiFi | – |
Phan et al. [129] | Microphone | – | Logistic Regression, Random Forest, Decision Trees (C4.5), Extra Trees (ET), XGBoost (gradient boosting), k-nearest neighbors (KNN) |
Kviesis et al. [37] | Temperature, Weight scale | GSM/GPRS | event detection via thresholds and time-interval-based rules, CNN-based DNNs (spectrogram input) |
Abdollahi et al. [100] | Temperature, Humidity, Microphone | – | discrete wavelet transform (DWT), Mel-Frequency Cepstral Coefficients (MFCC), Spectrograms |
Campell et al. [124] | Temperature, Humidity, Weight scale, Microphone, Camera | – | Short term Fourier transform (STFT), Non-Negative Matrix Factorization (NMF), Masked NMF, Minimum Covariance Determinant (MCD), ANN |
Grammalidis et al. [130] | Temperature, Humidity, Camera, Microscope images, Satellite images | – | CNN, Mask R-CNN, U-TAE (Transformer + U-Net), YOLOv6 |
Florea et al. [131] | Temperature, Air Pressure, Humidity, Microphone, ultrasonic distance | – | event detection via thresholds and time-interval-based rules |
Libal et al. [71] | Microphone | – | Fast Fourier Transform (FFT), BURG algorithm, Autoencoder neural networks, Blackman-Tukey |
Chen et al. [38] | Temperature, Humidity, Weight scale, Counter | LoRaWAN | event detection via thresholds and time-interval-based rules |
Sledevič et al. [72] | Camera | – | YOLOv8m |
Sharma et al. [101] | Camera | – | CLAHE (contrast enhancement), CNN (ResNet-50, Inception V3) |
Sledevič et al. [73] | Camera | – | YOLOv8m |
Barbisan et al. [102] | Microphone | – | Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), multilayer perceptron (MLP) |
Durga et al. [103] | Camera | – | Vision Transformer (ViT14, ViT16, ViT32) |
De Simone et al. [104] | Microphone | – | Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), 2-layer NN |
Hamza, et al. [39] | Temperature, Humidity, Weight scale, Microphone | – | event detection via thresholds and time-interval-based rules |
Sanz, et al. [40] | Temperature, Air Pressure, Humidity | LoRaWAN | Statistical analysis (ANOVA + Fisher LSD) |
Ruvinga, et al. [105] | Microphone | – | Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), CNN, LSTM neural networks, Logistic Regression, multilayer perceptron (MLP) |
Thi, et al. [74] | Microphone | – | Genetic Programming (GP) |
Lee, et al. [106] | Camera | – | ORB (Oriented FAST and Rotated BRIEF), Contrast-Limited Adaptive Histogram Equalization (CLAHE), RGB/HSV/Lab/Gray/YCrCb color models, Histogram Equalization |
Capela, et al. [41] | Weight scale, Camera | – | DeepBee# (custom-trained CNN) |
Dokukin, et al. [107] | Microphone | – | Support vector machine (SVM), Logistic Regression, Random Forest, XGBoost (gradient boosting), Statistically Weighted Syndrome (SWS), OVP method |
Nasir et al. [139] | Camera, Infrared camera | – | Xception, GoogLeNet, Ensemble Bagged Trees, Multi-evidence fusion via weighted voting |
Milovanović et al. [42] | 900 IR photo reflectors | GSM/GPRS | Reflectivity-based classification (voltage thresholds), Absorption spectroscopy |
Divasón et al. [108] | Camera | – | Faster R-CNN + ResNet50-FPN backbone, Enhanced Deep Super-Resolution (EDSR), Stochasticgradientdescent(SGD) |
Braga et al. [135] | Vibration, GPS module | GSM/GPRS | Rule-based detection: vibration triggers + GPS tracking + notification logic |
References
- Henry, E.; Adamchuk, V.; Stanhope, T.; Buddle, C.; Rindlaub, N. Precision apiculture: Development of a wireless sensor network for honeybee hives. Comput. Electron. Agric. 2019, 156, 138–144. [Google Scholar] [CrossRef]
- Zacepins, A.; Kviesis, A.; Stalidzans, E.; Liepniece, M.; Meitalovs, J. Remote detection of the swarming of honey bee colonies by single-point temperature monitoring. Biosyst. Eng. 2016, 148, 76–80. [Google Scholar] [CrossRef]
- Ochoa, I.Z.; Gutierrez, S.; Rodriguez, F. Internet of things: Low cost monitoring BeeHive system using wireless sensor network. In Proceedings of the 2019 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Mexico, 14–17 October 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Khairul Anuar, N.H.; Amri Md Yunus, M.; Baharuddin, M.A.; Sahlan, S.; Abid, A.; Ramli, M.M.; Razzi Abu Amin, M.; Mohd Lotpi, Z.F. IoT platform for precision stingless bee farming. In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Zabasta, A.; Kunicina, N.; Kondratjevs, K.; Ribickis, L. IoT approach application for development of autonomous beekeeping system. In Proceedings of the 2019 International Conference in Engineering Applications (ICEA), Sao Miguel, Portugal, 8–11 July 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Komasilovs, V.; Zacepins, A.; Kviesis, A.; Fiedler, S.; Kirchner, S. Modular sensory hardware and data processing solution for implementation of the precision beekeeping. Agron. Res. 2019, 17, 509–517. [Google Scholar]
- Sánchez, V.; Gil, S.; Flores, J.M.; Quiles, F.J.; Ortiz, M.A.; Luna, J.J. Implementation of an electronic system to monitor the thermoregulatory capacity of honeybee colonies in hives with open-screened bottom boards. Comput. Electron. Agric. 2015, 119, 209–216. [Google Scholar] [CrossRef]
- Gil-Lebrero, S.; Quiles-Latorre, F.; Ortiz-López, M.; Sánchez-Ruiz, V.; Gámiz-López, V.; Luna-Rodríguez, J. Honey bee colonies remote monitoring system. Sensors 2016, 17, 55. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.Y.; Sharma, D.B.; Xue, Y.; Wang, Z.; Ren, B. Drone and worker brood microclimates are regulated differentially in honey bees, Apis mellifera. PLoS ONE 2016, 11, e0148740. [Google Scholar] [CrossRef]
- Kale, D.J.; Tashakkori, R.; Parry, R.M. Automated beehive surveillance using computer vision. In Proceedings of the SoutheastCon 2015, Fort Lauderdale, FL, USA, 9–12 April 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Kviesis, A.; Zacepins, A. Application of neural networks for honey bee colony state identification. In Proceedings of the 2016 17th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 29 May–1 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Rybin, V.G.; Butusov, D.N.; Karimov, T.I.; Belkin, D.A.; Kozak, M.N. Embedded data acquisition system for beehive monitoring. In Proceedings of the 2017 IEEE II International Conference on Control in Technical Systems (CTS), St. Petersburg, Russia, 25–27 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Edwards Murphy, F.; Magno, M.; Whelan, P.; Vici, E.P. b+WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring—Preliminary results and analysis. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Edwards-Murphy, F.; Magno, M.; Whelan, P.M.; O’Halloran, J.; Popovici, E.M. b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Comput. Electron. Agric. 2016, 124, 211–219. [Google Scholar] [CrossRef]
- Kridi, D.S.; de Carvalho, C.G.N.; Gomes, D.G. Application of wireless sensor networks for beehive monitoring and in-hive thermal patterns detection. Comput. Electron. Agric. 2016, 127, 221–235. [Google Scholar] [CrossRef]
- Murphy, F.E.; Magno, M.; O’Leary, L.; Troy, K.; Whelan, P.; Popovici, E.M. Big brother for bees (3B)—Energy neutral platform for remote monitoring of beehive imagery and sound. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Schurischuster, S.; Kampel, M. VarroaDataset; Zenodo Dataset: Genève, Switzerland, 2020. [Google Scholar] [CrossRef]
- Biernacki, P. Dataset for Honey Bee Audio Detection; Zenodo Dataset: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
- Zacepins, A.; Brusbardis, K.; Meitalovs, J.; Stalidzans, E. Challenges in the Development of Precision Beekeeping. Biosyst. Eng. 2017, 153, 35–48. [Google Scholar] [CrossRef]
- Cecchi, L.; Bencini, L.; Rocchi, P.; Malik, R.S.; Manes, G. Development and Field Testing of a Smart Beehive Monitoring System. IEEE Internet Things J. 2020, 7, 5824–5833. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Edwards Murphy, F.; Popovici, E.; Whelan, P.; Magno, M. Development of an heterogeneous wireless sensor network for instrumentation and analysis of beehives. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Liu, C.; Leonard, J.J.; Feddes, J.J. Automated monitoring of flight activity at a beehive entrance using infrared light sensors. J. Apic. Res. 1990, 29, 20–27. [Google Scholar] [CrossRef]
- Aydin, S.; Nafiz Aydin, M. Design and implementation of a smart beehive and its monitoring system using microservices in the context of IoT and open data. Comput. Electron. Agric. 2022, 196, 106897. [Google Scholar] [CrossRef]
- Hong, W.; Xu, B.; Chi, X.; Cui, X.; Yan, Y.; Li, T. Long-term and extensive monitoring for bee colonies based on internet of things. IEEE Internet Things J. 2020, 7, 7148–7155. [Google Scholar] [CrossRef]
- Imoize, A.L.; Odeyemi, S.D.; Adebisi, J.A. Development of a low-cost wireless bee-hive temperature and sound monitoring system. Indones. J. Electr. Eng. Inform. 2020, 8, 476–485. [Google Scholar]
- Cecchi, S.; Spinsante, S.; Terenzi, A.; Orcioni, S. A smart sensor-based measurement system for advanced bee hive monitoring. Sensors 2020, 20, 2726. [Google Scholar] [CrossRef]
- Zacepins, A.; Kviesis, A.; Komasilovs, V.; Rido Muhammad, F. Monitoring system for remote bee colony state detection. Balt. J. Mod. Comput. 2020, 8, 461–470. [Google Scholar] [CrossRef]
- Catania, P.; Vallone, M. Application of A precision apiculture system to monitor honey daily production. Sensors 2020, 20, 2012. [Google Scholar] [CrossRef]
- Bairo, A.; Elisadiki, J. Development of a digital spring-based weight sensor for monitoring beehive weight. EAJSTI 2024, 6. [Google Scholar] [CrossRef]
- Karan, I.; Leelipushpam Paulraj, G.J.; Johnraja Jebadurai, I.; Allwin, J.; Sharan; Peace, S.J. BeeSense-A Smart Beehive Monitoring System for Sustainable Apiculture. In Proceedings of the 2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA), Namakkal, India, 15–16 March 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Gaikwad, V.; Amune, A.; Rajput, V.; Musale, V.; Rajas, N.; Kakade, S. Smart Beehive Monitoring System using IoT. In Proceedings of the 2024 Second International Conference on Advances in Information Technology (ICAIT), Chikkamagaluru, India, 24–27 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–10. [Google Scholar]
- Zheng, Y.; Cao, X.; Xu, S.; Guo, S.; Huang, R.; Li, Y.; Chen, Y.; Yang, L.; Cao, X.; Idrus, Z.; et al. Intelligent beehive monitoring system based on internet of things and colony state analysis. Smart Agric. Technol. 2024, 9, 100584. [Google Scholar] [CrossRef]
- Cota, D.; Martins, J.; Mamede, H.; Branco, F. BHiveSense: An integrated information system architecture for sustainable remote monitoring and management of apiaries based on IoT and microservices. J. Open Innov. 2023, 9, 100110. [Google Scholar] [CrossRef]
- Abdollahi, M.; Coallier, N.; Giovenazzo, P.; Falk, T.H. Performance comparison of voice activity detectors for acoustic beehive monitoring. In Proceedings of the 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina, SK, Canada, 24–27 September 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Milovanović, M.; Pejić, J.; Pejić, P. Development of smart beehive frame for multi-parameter monitoring. In Proceedings of the 2023 IEEE 33rd International Conference on Microelectronics (MIEL), Nis, Serbia, 16–18 October 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Kviesis, A.; Komasilovs, V.; Ozols, N.; Zacepins, A. Bee colony remote monitoring based on IoT using ESP-NOW protocol. PeerJ Comput. Sci. 2023, 9, e1363. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, L.; Zhong, J. Design of an unmanned bee breeding box control system based on stm32. In Proceedings of the 2024 10th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 27–29 April 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Hamza, A.S.; Tashakkori, R.; Underwood, B.; O’Brien, W.; Campell, C. BeeLive: The IoT platform of Beemon monitoring and alerting system for beehives. Smart Agric. Technol. 2023, 6, 100331. [Google Scholar] [CrossRef]
- Sanz, M.C.; Prado-Jimeno, R.; Fuentes-Pérez, J.F. Comparative study of natural fibres to improve insulation in wooden beehives using sensor networks. Appl. Sci. 2024, 14, 5760. [Google Scholar] [CrossRef]
- Capela, N.; Dupont, Y.L.; Rortais, A.; Sarmento, A.; Papanikolaou, A.; Topping, C.J.; Arnold, G.; Pinto, M.A.; Rodrigues, P.J.; More, S.J.; et al. High accuracy monitoring of honey bee colony development by a quantitative method. J. Apic. Res. 2022, 62, 741–750. [Google Scholar] [CrossRef]
- Milovanović, M.; Pejić, J.; Pejić, P. Advanced sensors for noninvasive bee colony inspection. Comput. Electron. Agric. 2025, 231, 109945. [Google Scholar] [CrossRef]
- Zgank, A. Acoustic monitoring and classification of bee swarm activity using MFCC feature extraction and HMM acoustic modeling. In Proceedings of the 2018 ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Kulyukin, V.; Mukherjee, S. On video analysis of omnidirectional bee traffic: Counting bee motions with motion detection and image classification. Appl. Sci. 2019, 9, 3743. [Google Scholar] [CrossRef]
- Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward audio beehive monitoring: Deep learning vs. Standard machine learning in classifying beehive audio samples. Appl. Sci. 2018, 8, 1573. [Google Scholar] [CrossRef]
- Tu, G.J.; Hansen, M.K.; Kryger, P.; Ahrendt, P. Automatic behaviour analysis system for honeybees using computer vision. Comput. Electron. Agric. 2016, 122, 10–18. [Google Scholar] [CrossRef]
- Struye, M.H.; Mortier, H.J.; Arnold, G.; Miniggio, C.; Borneck, R. Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie 1994, 25, 384–395. [Google Scholar] [CrossRef]
- Ramsey, M.; Bencsik, M.; Newton, M.I. Extensive vibrational characterisation and long-term monitoring of honeybee dorso-ventral abdominal vibration signals. Sci. Rep. 2018, 8, 14571. [Google Scholar] [CrossRef]
- Bermig, S.; Odemer, R.; Gombert, A.J.; Frommberger, M.; Rosenquist, R.; Pistorius, J. Experimental validation of an electronic counting device to determine flight activity of honey bees (Apis mellifera L.). J. Für Kult. 2020, 72, 132–140. [Google Scholar]
- Ngo, T.N.; Rustia, D.J.A.; Yang, E.C.; Lin, T.T. Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system. Comput. Electron. Agric. 2021, 187, 106239. [Google Scholar] [CrossRef]
- Williams, S.M.; Bariselli, S.; Palego, C.; Holland, R.; Cross, P. A comparison of machine-learning assisted optical and thermal camera systems for beehive activity counting. Smart Agric. Technol. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Zgank, A. Bee swarm activity acoustic classification for an IoT-based farm service. Sensors 2019, 20, 21. [Google Scholar] [CrossRef]
- Libal, U.; Biernacki, P. MFCC-based sound classification of honey bees. Int. J. Electron. Telecommun. 2024, 70, 849–853. [Google Scholar] [CrossRef]
- Penaloza-Aponte, D.; Brandt, S.; Dent, E.; Underwood, R.M.; DeMoras, B.; Bruckner, S.; López-Uribe, M.M.; Urbina, J.V. Automated entrance monitoring to investigate honey bee foraging trips using open-source wireless platform and fiducial tags. HardwareX 2024, 20, e00609. [Google Scholar] [CrossRef]
- Kongsilp, P.; Taetragool, U.; Duangphakdee, O. Individual honey bee tracking in a beehive environment using deep learning and Kalman filter. Sci. Rep. 2024, 14, 1061. [Google Scholar] [CrossRef]
- Chowdhury, M.T.; Rahman, H.; Sumon, M.I.; Hossain, M.S.; Reza, A.W.; Emon, M.Y. Estimation on beehive landing boards using machine learning algorithm. In Proceedings of the 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE), Rourkela, India, 19–21 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Lei, C.; Lu, Y.; Xing, Z.; Zhang, J.; Li, S.; Wu, W.; Liu, S. A honey bee in-and-out counting method based on multiple object tracking algorithm. Insects 2024, 15, 974. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Le, T.N.; Phung, T.H.; Nguyen, D.M.; Nguyen, H.Q.; Pham, H.T.; Phan, T.T.H.; Vu, H.; Le, T.L. Improving pollen-bearing honey bee detection from videos captured at hive entrance by combining deep learning and handling imbalance techniques. Ecol. Inform. 2024, 82, 102744. [Google Scholar] [CrossRef]
- Ho, H.T.; Pham, M.T.; Tran, Q.D.; Pham, Q.H.; Phan, T.T.H. Evaluating audio feature extraction methods for identifying bee queen presence. In Proceedings of the 12th International Symposium on Information and Communication Technology, New York, NY, USA, 7–8 December 2023; pp. 93–100. [Google Scholar]
- Sledevič, T.; Serackis, A.; Matuzevičius, D.; Plonis, D.; Vdoviak, G. Visual recognition of honeybee behavior patterns at the hive entrance. PLoS ONE 2025, 20, e0318401. [Google Scholar] [CrossRef] [PubMed]
- Libal, U.; Biernacki, P. Non-intrusive system for honeybee recognition based on audio signals and maximum likelihood classification by autoencoder. Sensors 2024, 24, 5389. [Google Scholar] [CrossRef] [PubMed]
- Micheli, M.; Papa, G.; Negri, I.; Lancini, M.; Nuzzi, C.; Pasinetti, S. Sensorizing a beehive: A study on potential embedded solutions for internal contactless monitoring of bees activity. Sensors 2024, 24, 5270. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.T.; Parry, R.M.; Campell, C.; Tashakkori, R. Bee traffic estimation with YOLO and optical flow. In Proceedings of the SoutheastCon 2024, Atlanta, GA, USA, 15–24 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 928–933. [Google Scholar]
- Sledevič, T.; Serackis, A.; Matuzevičius, D.; Plonis, D.; Andriukaitis, D. Keypoint-based bee orientation estimation and ramp detection at the hive entrance for bee behavior identification system. Agriculture 2024, 14, 1890. [Google Scholar] [CrossRef]
- Iqbal, K.; Alabdullah, B.; Al Mudawi, N.; Algarni, A.; Jalal, A.; Park, J. Empirical analysis of honeybees acoustics as biosensors signals for swarm prediction in beehives. IEEE Access 2024, 12, 148405–148421. [Google Scholar] [CrossRef]
- Janetzky, P.; Schaller, M.; Krause, A.; Hotho, A. Swarming detection in smart beehives using auto encoders for audio data. In Proceedings of the 2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP), Ohrid, North Macedonia, 27–29 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Várkonyi, D.T.; Seixas, J.L., Jr.; Horváth, T. Dynamic noise filtering for multi-class classification of beehive audio data. Expert Syst. Appl. 2023, 213, 118850. [Google Scholar] [CrossRef]
- Williams, S.M.; Aldabashi, N.; Cross, P.; Palego, C. Challenges in developing a real-time bee-counting radar. Sensors 2023, 23, 5250. [Google Scholar] [CrossRef]
- Kulyukin, V.A.; Kulyukin, A.V. Accuracy vs. Energy: An assessment of bee object inference in videos from on-hive video loggers with YOLOv3, YOLOv4-tiny, and YOLOv7-tiny. Sensors 2023, 23, 6791. [Google Scholar] [CrossRef]
- Safie, S.I.; Kamal, N.S.A.; Yusof, E.M.M.; Tohid, M.Z.W.M.; Jaafar, N.H. Comparison of SqueezeNet and DarkNet-53 based YOLO-V3 performance for beehive intelligent monitoring system. In Proceedings of the 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 20–21 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 62–65. [Google Scholar]
- Libal, U.; Biernacki, P. Detecting drones at an entrance to a beehive based on audio signals and autoencoder neural networks. In Proceedings of the 2023 Signal Processing Symposium (SPSympo), Karpacz, Poland, 26–28 September 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Sledević, T.; Plonis, D. Toward bee behavioral pattern recognition on hive entrance using YOLOv8. In Proceedings of the 2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 27–29 April 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Sledevič, T.; Abromavičius, V. Toward bee motion pattern identification on hive landing board. In Proceedings of the 2023 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 27 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Nguyen Thi, H.; Phan, T.T.H.; Tran, C.T. Genetic programming for bee audio classification. In Proceedings of the 2023 8th International Conference on Intelligent Information Technology, New York, NY, USA, 24–26 February 2023; pp. 246–250. [Google Scholar]
- Marstaller, J.; Tausch, F.; Stock, S. DeepBees—Building and scaling convolutional neuronal nets for fast and large-scale visual monitoring of bee hives. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Szczurek, A.; Maciejewska, M.; Bąk, B.; Wilde, J.; Siuda, M. Semiconductor gas sensor as a detector of Varroa destructor infestation of honey bee colonies—Statistical evaluation. Comput. Electron. Agric. 2019, 162, 405–411. [Google Scholar] [CrossRef]
- Mrozek, D.; Gȯrny, R.; Wachowicz, A.; Małysiak-Mrozek, B. Edge-based detection of varroosis in beehives with IoT devices with embedded and TPU-accelerated machine learning. Appl. Sci. 2021, 11, 11078. [Google Scholar] [CrossRef]
- Kviesis, A.; Komasilovs, V.; Komasilova, O.; Zacepins, A. Application of fuzzy logic for honey bee colony state detection based on temperature data. Biosyst. Eng. 2020, 193, 90–100. [Google Scholar] [CrossRef]
- Rafael Braga, A.; Gomes, D.G.; Rogers, R.; Hassler, E.E.; Freitas, B.M.; Cazier, J.A. A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Comput. Electron. Agric. 2020, 169, 105161. [Google Scholar] [CrossRef]
- Li, L.; Lu, C.; Hong, W.; Zhu, Y.; Lu, Y.; Wang, Y.; Xu, B.; Liu, S. Analysis of temperature characteristics for overwintering bee colonies based on long-term monitoring data. Comput. Electron. Agric. 2022, 198, 107104. [Google Scholar] [CrossRef]
- Kaplan Berkaya, S.; Sora Gunal, E.; Gunal, S. Deep learning-based classification models for beehive monitoring. Ecol. Inform. 2021, 64, 101353. [Google Scholar] [CrossRef]
- Alves, T.S.; Pinto, M.A.; Ventura, P.; Neves, C.J.; Biron, D.G.; Junior, A.C.; De Paula Filho, P.L.; Rodrigues, P.J. Automatic detection and classification of honey bee comb cells using deep learning. Comput. Electron. Agric. 2020, 170, 105244. [Google Scholar] [CrossRef]
- Sevin, S.; Tutun, H.; Mutlu, S. Detection of Varroa mites from honey bee hives by smart technology Var-Gor: A hive monitoring and image processing device. Turk. J. Vet. Anim. Sci. 2021, 45, 487–491. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Heo, T.Y. Acoustic scene classification and visualization of beehive sounds using machine learning algorithms and Grad-CAM. Math. Probl. Eng. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Schurischuster, S.; Kampel, M. Image-based classification of honeybees. In Proceedings of the 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, 9–12 November 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Degenfellner, J.; Templ, M. Modeling bee hive dynamics: Assessing colony health using hive weight and environmental parameters. Comput. Electron. Agric. 2024, 218, 108742. [Google Scholar] [CrossRef]
- Divasón, J.; Romero, A.; Martinez-de Pison, F.J.; Casalongue, M.; Silvestre, M.A.; Santolaria, P.; Yániz, J.L. Analysis of Varroa mite colony infestation level using new open software based on deep learning techniques. Sensors 2024, 24, 3828. [Google Scholar] [CrossRef]
- Camayo, A.I.C.; Muñoz, M.A.C.; Corrales, J.C. ApIsoT: An IoT function aggregation mechanism for detecting Varroa infestation in Apis mellifera species. Agriculture 2024, 14, 846. [Google Scholar] [CrossRef]
- Narcia-Macias, C.I.; Guardado, J.; Rodriguez, J.; Park, J.; Rampersad-Ammons, J.; Enriquez, E.; Kim, D.C. IntelliBeeHive: An automated honey bee, pollen, and Varroa destructor monitoring system. In Proceedings of the 2024 International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 18–20 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 845–850. [Google Scholar]
- Garção, T.; Sousa, J.; André, L.; Ferreira, J. BEE-YOND BUZZ: Exploring deep learning techniques for beehive audio classification. In Proceedings of the 2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Male, Maldives, 4–6 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Kontogiannis, S. Beehive smart detector device for the detection of critical conditions that utilize edge device computations and deep learning inferences. Sensors 2024, 24, 5444. [Google Scholar] [CrossRef] [PubMed]
- Robles-Guerrero, A.; Gómez-Jiménez, S.; Saucedo-Anaya, T.; López-Betancur, D.; Navarro-Solís, D.; Guerrero-Méndez, C. Convolutional neural networks for real time classification of beehive acoustic patterns on constrained devices. Sensors 2024, 24, 6384. [Google Scholar] [CrossRef] [PubMed]
- Otesbelgue, A.; de Lima Rodrigues, Í.; dos Santos, C.F.; Gomes, D.G.; Blochtein, B. The missing queen: A non-invasive method to identify queenless stingless bee hives. Apidologie 2025, 56. [Google Scholar] [CrossRef]
- Luz, J.S.; De Oliveira, M.C.; Pereira, F.d.M.; De Araújo, F.H.D.; Magalhães, D.M.V. Cepstral and Deep Features for Apis mellifera hive strength classification. J. Internet Serv. Appl. 2024, 15, 548–560. [Google Scholar] [CrossRef]
- De Simone, A.; Barbisan, L.; Turvani, G.; Riente, F. Advancing beekeeping: IoT and TinyML for queen bee monitoring using audio signals. IEEE Trans. Instrum. Meas. 2024, 73, 2527309. [Google Scholar] [CrossRef]
- Newton, M.I.; Chamberlain, L.; McVeigh, A.; Bencsik, M. Winter carbon dioxide measurement in honeybee hives. Appl. Sci. 2024, 14, 1679. [Google Scholar] [CrossRef]
- Rathore, N.; Tyagi, P.K.; Agrawal, D. Semi-automatic Analysis of cells in honeybee comb images. In Proceedings of the 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 18–19 February 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Borgianni, L.; Ahmed, M.S.; Adami, D.; Giordano, S. Spectrogram Based Bee Sound Analysis with DNNs: A step toward Federated Learning approach. In Proceedings of the 2023 4th International Symposium on the Internet of Sounds, Pisa, Italy, 26–27 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8. [Google Scholar]
- Mahajan, Y.; Mehta, D.; Miranda, J.; Pinto, R.; Patil, V. NeuralBee—A beehive health monitoring system. In Proceedings of the 2023 International Conference on Communication System, Computing and IT Applications (CSCITA), Mumbai, India, 31 March–1 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 84–89. [Google Scholar]
- Abdollahi, M.; Henry, E.; Giovenazzo, P.; Falk, T.H. The importance of context awareness in acoustics-based automated beehive monitoring. Appl. Sci. 2022, 13, 195. [Google Scholar] [CrossRef]
- Sharma, A.; Varastehpour, S.; Ardekani, I.; Sharifzadeh, H. Bee disease Varroa prediction: Utilizing convolutional neural networks with augmentation for robust detection and identification of honeybee infection. In Proceedings of the 2024 1st International Conference on Innovative Engineering Sciences and Technological Research (ICIESTR), Muscat, Oman, 14–15 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Barbisan, L.; Turvani, G.; Riente, F. A machine learning approach for queen bee detection through remote audio sensing to safeguard honeybee colonies. IEEE Trans. Agri. Elect. 2024, 2, 236–243. [Google Scholar] [CrossRef]
- Durga; Ahmad, N. Enhancing honeybee hive health monitoring: Vision transformer-based non-invasive classification. In Proceedings of the 2025 International Conference on Ambient Intelligence in Health Care (ICAIHC), Raipur Chattisgarh, India, 10–11 January 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar]
- De Simone, A.; Barbisan, L.; Turvani, G.; Riente, F. IoT-based bee colony health monitoring: A focus on energy impact and audio feature extraction. In Proceedings of the 2024 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Padua, Italy, 29–31 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 289–294. [Google Scholar]
- Ruvinga, S.; Hunter, G.; Duran, O.; Nebel, J.C. Identifying queenlessness in honeybee hives from audio signals using machine learning. Electronics 2023, 12, 1627. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, M.J.; Kim, S.B.; Lee, S.; Lee, H.; Sin, J.Y.; Mo, C. Identifying an image-processing method for detection of bee mite in honey bee based on keypoint analysis. Agriculture 2023, 13, 1511. [Google Scholar] [CrossRef]
- Dokukin, A.A.; Kuznetsova, A.V.; Okulov, N.V.; Senko, O.V.; Chuchupal, V.Y. Methods of intelligent data analysis in hive state assessment problem. Pattern Recognit. Image Anal. 2024, 34, 1271–1280. [Google Scholar] [CrossRef]
- Divasón, J.; Martinez-de Pison, F.J.; Romero, A.; Santolaria, P.; Yániz, J.L. Varroa mite detection using deep learning techniques. In Hybrid Artificial Intelligent Systems; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2023; pp. 326–337. [Google Scholar]
- Andrijević, N.; Urošević, V.; Arsić, B.; Herceg, D.; Savić, B. IoT monitoring and prediction modeling of honeybee activity with alarm. Electronics 2022, 11, 783. [Google Scholar] [CrossRef]
- Voudiotis, G.; Kontogiannis, S.; Pikridas, C. Proposed smart monitoring system for the detection of bee swarming. Inventions 2021, 6, 87. [Google Scholar] [CrossRef]
- Robustillo, M.C.; Pérez, C.J.; Parra, M.I. Predicting internal conditions of beehives using precision beekeeping. Biosyst. Eng. 2022, 221, 19–29. [Google Scholar] [CrossRef]
- Rafael Braga, A.; Gomes, D.G.; Freitas, B.M.; Cazier, J.A. A cluster-classification method for accurate mining of seasonal honey bee patterns. Ecol. Inform. 2020, 59, 101107. [Google Scholar] [CrossRef]
- Braga, A.R.; Freitas, B.M.; Gomes, D.G.; Bezerra, A.D.M.; Cazier, J.A. Forecasting sudden drops of temperature in pre-overwintering honeybee colonies. Biosyst. Eng. 2021, 209, 315–321. [Google Scholar] [CrossRef]
- Libal, U.; Biernacki, P. MFCC selection by LASSO for honey bee classification. Appl. Sci. 2024, 14, 913. [Google Scholar] [CrossRef]
- Minaud, E.; Rebaudo, F.; Mainardi, G.; Vardakas, P.; Hatjina, F.; Steffan-Dewenter, I.; Requier, F. Temperature in overwintering honey bee colonies reveals brood status and predicts colony mortality. Ecol. Indic. 2024, 169, 112961. [Google Scholar] [CrossRef]
- Kamga, G.A.F.; Bouroubi, Y.; Germain, M.; Martin, G.; Bitjoka, L. Beekeeping suitability prediction based on an adaptive neuro-fuzzy inference system and apiary level data. Ecol. Inform. 2025, 86, 103015. [Google Scholar] [CrossRef]
- Bono, F.; Vallone, M.; Alleri, M.; Lo Verde, G.; Orlando, S.; Ragusa, E.; Catania, P. Hive behaviour assessment through vector autoregressive model by a smart apiculture system in the Mediterranean area. Smart Agric. Technol. 2024, 9, 100676. [Google Scholar] [CrossRef]
- Ramirez-Diaz, J.; Manunza, A.; de Oliveira, T.A.; Bobbo, T.; Nutini, F.; Boschetti, M.; De Iorio, M.G.; Pagnacco, G.; Polli, M.; Stella, A.; et al. Combining environmental variables and machine learning methods to determine the most significant factors influencing honey production. Insects 2025, 16, 278. [Google Scholar] [CrossRef] [PubMed]
- Várkonyi, D.T.; Bányai, D.T.; Várkonyi-Kóczy, A.R. Investigating traditional machine learning models and the utility of audio features for lightweight swarming prediction in beehives. Acta Polytech. Hung. 2024, 21, 283–299. [Google Scholar] [CrossRef]
- Robustillo, M.C.; Naranjo, L.; Parra, M.I.; Pérez, C.J. Addressing multidimensional highly correlated data for forecasting in precision beekeeping. Comput. Electron. Agric. 2024, 226, 109390. [Google Scholar] [CrossRef]
- Kulyukin, V.A.; Coster, D.; Kulyukin, A.V.; Meikle, W.; Weiss, M. Discrete time series forecasting of hive weight, in-hive temperature, and hive entrance traffic in non-invasive monitoring of managed honey bee colonies: Part I. Sensors 2024, 24, 6433. [Google Scholar] [CrossRef]
- Kulyukin, V.A.; Coster, D.; Tkachenko, A.; Hornberger, D.; Kulyukin, A.V. Ambient electromagnetic radiation as a predictor of honey bee (Apis mellifera) traffic in linear and non-linear regression: Numerical stability, physical time and energy efficiency. Sensors 2023, 23, 2584. [Google Scholar] [CrossRef]
- Wu, V. Development of a predictive model of honey bee foraging activity under different climate conditions. In Proceedings of the 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Wuhan, China, 25–28 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Campell, C.; Parry, R.M.; Tashakkori, R. Non-invasive spectral-based swarm detection. In Proceedings of the SoutheastCon 2023, Orlando, FL, USA, 1–16 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 253–260. [Google Scholar]
- Rodias, E.; Kilimpas, V. Remote monitoring of bee apiaries as a tool for crisis management. AgriEngineering 2024, 6, 2269–2282. [Google Scholar] [CrossRef]
- Liyanage, N.; Attanayaka, C.; Perera, T.; Neilkumara, D.; Bandara, I.S.; Chandrasiri, L. IoT-based smart beehive monitoring system. In Proceedings of the 2024 6th International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 12–13 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 247–252. [Google Scholar]
- Smerkol, M.; Šešet, Ž.; Bregant, B.; Simončič, S.; Finžgar, M.; Gradišek, A. Smart beehive monitoring system for identification of relevant beehive events. In Proceedings of the 2024 International Conference on Intelligent Environments (IE), Ljubljana, Slovenia, 17–20 June 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Vit, A.P.; Aronson, Y. Automatic detection of honey in hive frames using deep learning. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science, London, UK, 3–5 August 2023; Avestia Publishing: Orleans, ON, Canada, 2023. [Google Scholar]
- Phan, T.T.H.; Nguyen-Doan, D.; Nguyen-Huu, D.; Nguyen-Van, H.; Pham-Hong, T. Investigation on new Mel frequency cepstral coefficients features and hyper-parameters tuning technique for bee sound recognition. Soft Comput. 2023, 27, 5873–5892. [Google Scholar] [CrossRef]
- Grammalidis, N.; Stergioulas, A.; Avramidis, A.; Karystinakis, K.; Partozis, T.; Topaloudis, A.; Kalantzi, G.; Tananaki, C.; Kanelis, D.; Liolios, V.; et al. A smart beekeeping platform based on remote sensing and artificial intelligence. In Proceedings of the Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023), Ayia Napa, Cyprus, 3–5 April 2023; Themistocleous, K., Michaelides, S., Hadjimitsis, D.G., Papadavid, G., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 47. [Google Scholar]
- Florea, G.; Codreanu, N. Sensor-driven motorized solution for beehive entrance control. In Proceedings of the 2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 27–29 June 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Vallone, M.; Orlando, S.; Alleri, M.; Ferro, M.V.; Catania, P. Honey Production with Remote Smart Monitoring System. Chem. Eng. Trans. 2023, 102, 169–174. [Google Scholar] [CrossRef]
- Lee, D.H.; Hu, W.W.; Lee, Y.L.; Chen, T.Y. New paradigm for beehive monitoring system using infrared and power line communication. IEEE Photonics J. 2025, 17, 7300709. [Google Scholar] [CrossRef]
- Alifieris, C.; Chamaidi, T.; Malisova, K.; Mamalis, D.; Nomikos, E.; Rigakis, C.; Vlachogiannis, E.; Stavrakis, M. IOHIVE: Architecture and infrastructure of an IOT system for beehive monitoring and an interactive journaling wearable device for beekeepers. In Computational Science and Its Applications; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2023; pp. 133–149. [Google Scholar]
- Rafael Braga, A.; Arruda Fontenele, T.; Guimarães Al-Alam, W.; de Carvalho Silva, J. Prototyping a system for detection and notification of damage or theft in beehives. Ecol. Inform. 2023, 75, 102015. [Google Scholar] [CrossRef]
- Chien, H.Y.; Hsu, T.W.; Lee, S.H.; Chen, W.S.; Chen, S.Y.; Tsai, P.J. YOLO-based bee-hornet real-time notification. In Proceedings of the 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom), Nara, Japan, 18–20 November 2024; IEEE: Piscataway, NJ, USA, 2024; p. 1. [Google Scholar]
- Hall, H.; Bencsik, M.; Capela, N.; Sousa, J.P.; de Graaf, D.C. Remote and automated detection of Asian hornets (Vespa velutina nigrithorax) at an apiary, using spectral features of their hovering flight sounds. Comput. Electron. Agric. 2025, 235, 110307. [Google Scholar] [CrossRef]
- Jeon, M.S.; Jeong, Y.; Lee, J.; Yu, S.H.; Kim, S.B.; Kim, D.; Kim, K.C.; Lee, S.; Lee, C.W.; Choi, I. Deep learning-based portable image analysis system for real-time detection of Vespa velutina. Appl. Sci. 2023, 13, 7414. [Google Scholar] [CrossRef]
- Nasir, A.; Ullah, M.O.; Yousaf, M.H. AI in apiculture: A novel framework for recognition of invasive insects under unconstrained flying conditions for smart beehives. Eng. Appl. Artif. Intell. 2023, 119, 105784. [Google Scholar] [CrossRef]
- María-Luisa, P.D.; Jesús-Ángel, R.G. Deep Learning for Vespa Velutina Detection. In Proceedings of the 2024 2nd International Conference on Machine Vision, Image Processing & Imaging Technology (MVIPIT), Zhangjiakou, China, 13–15 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 216–221. [Google Scholar]
- Nolasco, I.; Benetos, E. To Bee or not to Bee: An Annotated Dataset for Beehive Sound Recognition; Zenodo Dataset: Genève, Switzerland, 2018. [Google Scholar] [CrossRef]
- Nolasco, I.; Terenzi, A.; Cecchi, S.; Orcioni, S.; Bear, H.L.; Benetos, E. Audio-Based Identification of Beehive States: The Dataset; Zenodo Dataset: Genève, Switzerland, 2019. [Google Scholar] [CrossRef]
- Jyang, A. Smart Bee Colony Monitor: Clips of Beehive Sounds; Kaggle: San Francisco, CA, USA, 2021. [Google Scholar]
- Robles-Guerrero, A.; Saucedo-Anaya, T.; Gonzalez, E.; de la Rosa, J.I. Queenless Honeybee Acoustic Patterns; Elsevier Inc.: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Sledevic, T. Labeled Dataset for Bee Detection and Direction Estimation on Beehive Landing Boards; Elsevier Inc.: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Divasón, J.; Romero, A.; Martínez de Pisón, F.J.; Silvestre, M.A.; Santolaria, P.; Yániz, J.L. Dataset for Varroa Mite Detection on Sticky Boards; Zenodo Dataset: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
- Vietnam Agricultural Academy. The VnPollenBee Dataset. Dataset. Available online: https://comvis-hust.github.io/datasets/pollenbee.html (accessed on 12 June 2025).
- Yang, J. The BeeImage Dataset: Annotated Honey Bee Images; Kaggle: San Francisco, CA, USA, 2020. [Google Scholar]
- Dupont, Y.L.; Capela, N.; Kryger, P.; Alves, J.; Axelsen, J.A.; Greve, M.B.; Bruus, M.; Castro, S.; Frederiksen, J.; Groom, G.B.; et al. Research Project on Field Data Collection for Honey Bee Colony Model Evaluation—Datasets; Zenodo Dataset: Genève, Switzerland, 2021. [Google Scholar] [CrossRef]
- Newton, M. Winter Carbon Dioxide Measurements in UK Honeybee Hives 2022/2023. Dataset. 2023. Available online: https://figshare.com/articles/dataset/Winter_carbon_dioxide_measurements_in_UK_honeybee_hives_2022_2023/24411595 (accessed on 12 June 2025).
- NASA Langley Research Center. NASA POWER: Prediction of Worldwide Energy Resources. 2024. Available online: https://power.larc.nasa.gov/ (accessed on 12 June 2025).
- Naturami; Varkonyi, D.T. Beehive Audio Recordings; Zenodo Dataset: Genève, Switzerland, 2022. [Google Scholar] [CrossRef]
- Newton, M. Winter CO2 Measurements in UK Honeybee Hives (2022–2023); Figshare Dataset: London, UK, 2023. [Google Scholar]
- Rodić, L.D.; Županović, T.; Perković, T.; Šolić, P.; Rodrigues, J.J.P.C. Machine Learning and Soil Humidity Sensing: Signal Strength Approach. ACM Trans. Internet Technol. 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Dujić Rodić, L.; Perković, T.; Škiljo, M.; Šolić, P. Privacy leakage of LoRaWAN smart parking occupancy sensors. Future Gener. Comput. Syst. 2023, 138, 142–159. [Google Scholar] [CrossRef]
- Perković, T.; Dujić Rodić, L.; Šabić, J.; Šolić, P. Machine Learning Approach towards LoRaWAN Indoor Localization. Electronics 2023, 12, 457. [Google Scholar] [CrossRef]
- NASA Langley POWER Project. Prediction of Worldwide Energy Resources (POWER) v10; NASA POWER Platform: Washington, DC, USA, 2024. [Google Scholar]
Criteria | Description |
---|---|
Type of Data | Studies must report on environmental, acoustic, visual, or multisensory data collected from within or around beehives, supporting sensor-based monitoring or data-driven analysis. |
Algorithms or Techniques | While not a mandatory component, the adoption of data-driven approaches is widely considered advantageous for deriving structured insights from sensor observations and facilitating evidence-based interpretations in smart beekeeping research. |
Comparator | RQ1: Types of sensor modalities used. RQ2: Application domains. RQ3: Categories of ML and analytical methods used and trends in their adoption over time. RQ4: Reported technical and practical limitations, including system cost, data quality, power consumption, and deployment challenges. RQ5: Usage of publicly available datasets, categorized by data modality, labeling approach, and their role in model training or evaluation. |
Outcome | Detailed characterization of smart beehive systems, including sensor setups, communication methods, ML/AI techniques, goals and reported limitations. |
Timing | Articles published from January 1990 to April 2025. |
Environmental or Geographical Context | No restrictions; studies from any geographic region are considered. |
Publication Type | Peer-reviewed journal articles and conference papers published in English. |
Database | Search Query |
---|---|
Web of Science | ALL = (( (precision OR smart OR intelligent OR automated) AND (beekeeping OR beehive OR apiculture OR apiary) ) OR “precision beekeeping” OR “smart beehive”) AND DT==(“ARTICLE” OR “PROCEEDINGS PAPER”) AND DOP=1990-01-01/2025-04-07 |
IEEE Xplore | (“All Metadata”:“precision beekeeping” OR “All Metadata”:“smart beehive” OR ( (“All Metadata”:“precision” OR “smart” OR “intelligent” OR “automated”) AND (“All Metadata”:“beekeeping” OR “beehive” OR “apiculture” OR “apiary”) ) ) AND (“ContentType”:“Journals” OR “ContentType”:“Conferences”) |
Scopus | TITLE-ABS-KEY( ( ( precision OR smart OR intelligent OR automated ) AND ( beekeeping OR beehive OR apiculture OR apiary ) ) OR “precision beekeeping” OR “smart beehive” ) AND PUBYEAR > 1990 AND ( LIMIT-TO ( DOCTYPE,“ar” ) OR LIMIT-TO ( DOCTYPE,“cp” ) ) AND ( LIMIT-TO ( LANGUAGE,“English” ) ) |
Main Goal Category | Publications |
---|---|
Monitoring | [4,7,8,13,15,16,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42] |
Behavior Detection | [9,10,12,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] |
Health Assessment | [11,14,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108] |
Prediction/Forecasting | [2,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124] |
Optimization/Decision Support | [125,126,127,128,129,130,131,132] |
System/IoT Development | [1,3,5,6,133,134,135] |
Threat Detection | [136,137,138,139,140] |
Publication Period | Total Publications | Used Analytical Methods | % with Methods |
---|---|---|---|
Before 2015 | 2 | 0 | 0.0% |
2015–2018 | 16 | 11 | 68.8% |
2019–2022 | 32 | 26 | 81.2% |
2023–2025 | 85 | 81 | 95.3% |
Sensor Category | Example Device/Modality | Typical Accuracy | Approx. Cost a |
---|---|---|---|
Temperature (internal or external) | DS18B20 digital probe | ±0.5 °C | $2–5 per sensor |
Weight/load sensing | Four strain-gauge load cells with HX711 ADC | (approx. 0.02% full scale) | $20–30 for four sensors |
Acoustic/vibration | Electret microphone (audio sampling for soundscape) | Frequency response 20 Hz–20 kHz; no intrinsic accuracy but sensitivity of | $5–10 per sensor |
Imaging | Raspberry Pi camera V2 (8 MP) or USB webcam | 1080p resolution; shutter speeds down to 30 µs | $25–35 per camera |
Air composition | MQ-135 CO2 sensor or Figaro TGS series | ±(100 ppm + 5% of reading) for CO2 concentration | $10–20 per sensor |
Bee activity counters | Infrared gate or RFID tag | Counting accuracy 90–95% (dependent on traffic) | $15–25 per channel |
Application Task | Reported Performance |
---|---|
Queen absence/presence detection (microclimate or audio) | Achieved >97% accuracy using MFCC features in int16; 93% with STFT in int32 [95]; Microclimate dataset: KNN, MLP, SVM: 100% accuracy; Bioacustic dataset: MLP: 98.2% accuracy [93]; CNNs (e.g., ResNet-50) achieved up to 99% accuracy [91]. |
Drone vs. worker beeclassification (audio) | 99.88% accuracy using Random Forest and 99.68% using KNN [53]; MUSIC + NN3 + T*: 99.97%, GTCC + NN3 + T*: 99.94%, Burg/MFCC + NN4 + T*: ≥99.85% [61]; Burg method (parametric PSC): Accuracy = 95.9%, Blackman-Tukey method: Accuracy = 94.79% [71]. |
Swarm prediction/weight forecasting | Best LSTM performance was achieved with a 2-h prediction window, using a 4-hour input window, where RMSE ranged from 0.042 °C to 0.217 °C across hives [113]; Vector Error Correction Model (VEC) outperformed other models in most cases, showing: 1-day ahead MAEs: Temperature: 0.6–2.4 °C, Humidity: 2.4–10.9%, Weight: 63–178 g (3-day ahead predictions remained within similar error margins.) [120]; All model types (ANN, CNN, LSTM, ARIMA) were able to predict short-term and long-term trends of thethree variables [121]. |
Bee counting in images | This study used a dataset of 2300 annotated images and 7200 frames, training YOLOv8 to detect bees with high accuracy and robustness under variable lighting. The best model achieved a mean Average Precision (mAP@0.5) of 0.948, an F1-score of 0.91, and precision of 1.00 at a confidence threshold of 0.838. [56]; Best pipeline: YOLOv8m + OC-SORT + Box Method, achieving F1-in = 91.49%, F1-out = 89.08%, and FPS = 21.99 [57]. |
Mite detection on bee images | Bee detection had F1 ≈ 0.8 and precision up to 1.0, while Varroa detection showed TPR = 0.94, TNR = 0.92, F1 ≈ 0.8, and precision ≈ 0.7. Camera resolution strongly impacted detection effectiveness—5 MP required for reliable results, [77]; The authors developed and validated a deep learning model (Faster R-CNN + ResNet-FPN backbone): mAP (mean Average Precision): 0.907, mAR (mean Average Recall): 0.967. These scores were reached using ResNet50-FPN, confidence threshold of 0.5, refinement, and DeblurGAN [87]; YOLOv5s achieved best Varroa mite detection: mAP@0.5 = 0.974, Precision = 0.962, Recall = 0.967. YOLOv5n was fastest: 4.5 ms/image [99]. |
Activity anomalydetection (multimodal) | Achieved 99.7% accuracy and 87% F1 score on swarm detection using AE trained on spectrograms. Pre-swarming detection was more difficult: AE reached only 60% accuracy, 22–24% F1, vs. 76.4% accuracy with RF [66]; The fuzzy logic model achieved 98% accuracy, 100% precision, 97% recall, and 98% F1-score in colony state detection. It successfully identified events like swarming, colony death, and temperature anomalies based solely on hive temperature profiles [78]; Robust regression had R2 ≈ 0.95–0.997, and alarms could be triggered when observed values fall outside prediction intervals [86]. |
Dataset Title | Modality | Typical ML Purpose |
---|---|---|
To bee or not to bee: An annotated dataset for beehive sound recognition [141] | Acoustic | Binary sound classification (Bee vs. noBee) |
Audio-Based identification of Beehive states: The dataset [142] | Acoustic | Multi-class classification of calm/pre-swarm/swarm hive states |
Beehive Sounds [143] | Acoustic | State classification (healthy, distressed, empty); anomaly detection |
Dataset for honey bee audio detection [18] | Acoustic | Species classification (bee vs. drone) using spectrograms |
Queenless honeybee acoustic patterns [144] | Acoustic | Queen state detection |
Labeled dataset for bee detection and direction estimation on beehive landingboards [145] | Visual | Object detection, pose estimation, and behavior tracking from video |
Dataset for varroa mite detection on stickyboards [146] | Visual | Varroa mite detection |
VarroaDataset [17] | Visual | Parasite detection (Varroa destructor); object detection with bounding boxes |
VnPollenBee Dataset [147] | Visual | Pollen-bee classification |
Honey Bee Annotated Images [148] | Visual | Bee detection and classification |
Research project on field data collection for honey bee colony model evaluation [149] | Multimodal | Colony behavior/risk modeling; multi-source integration |
Bee colony remote monitoring based on IoT using ESP-NOW protocol [37] | Environmental | Colony state monitoring using temperature, weight, battery data for predictive modeling |
Winter carbon dioxide measurements in UK honeybee hives 2022/2023 [150] | Environmental | Winter vitality prediction |
NASA POWER [151] | Environmental | External environmental feature augmentation for beehive activity modeling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šabić, J.; Perković, T.; Šolić, P.; Šerić, L. Buzzing with Intelligence: A Systematic Review of Smart Beehive Technologies. Sensors 2025, 25, 5359. https://doi.org/10.3390/s25175359
Šabić J, Perković T, Šolić P, Šerić L. Buzzing with Intelligence: A Systematic Review of Smart Beehive Technologies. Sensors. 2025; 25(17):5359. https://doi.org/10.3390/s25175359
Chicago/Turabian StyleŠabić, Josip, Toni Perković, Petar Šolić, and Ljiljana Šerić. 2025. "Buzzing with Intelligence: A Systematic Review of Smart Beehive Technologies" Sensors 25, no. 17: 5359. https://doi.org/10.3390/s25175359
APA StyleŠabić, J., Perković, T., Šolić, P., & Šerić, L. (2025). Buzzing with Intelligence: A Systematic Review of Smart Beehive Technologies. Sensors, 25(17), 5359. https://doi.org/10.3390/s25175359