Deep Learning Predicts Postoperative Mobility, Activities of Daily Living, and Discharge Destination in Older Adults from Sensor Data
Abstract
Highlights
- Deep learning models applied to lumbar IMU data predict postoperative mobility (CHARMI) and activities of daily living (Barthel Index) in older surgical patients, with R2 values of 0.65 and 0.70, respectively.
- Recommended discharge destinations were predicted with 82% accuracy using lumbar IMU data and deep learning.
- IMU-based assessment and deep learning offer the potential for automated, objective, and continuous monitoring of functional recovery.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. IMU Feature Extraction
2.3. Gait Detection
2.4. Deep Learning
3. Results
3.1. Study Population
3.2. Gait Detection
3.3. Deep Learning
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IMU | Inertial Measurement Unit |
AI | Artificial Intelligence |
ADL | Activities of Daily Living |
SURGE-Ahead | Supporting SURgery with GEriatric co-management and AI |
ISAR | Identification of seniors at risk |
CHARMI | Charité Mobility Index |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
CI | Confidence interval |
BMI | Body mass index |
NRS | Nutritional Risk Screening |
MoCA | Montreal Cognitive Assessment |
PHQ-4 | Patient Health Questionnaire-4 |
CFS | Clinical Frailty Scale |
ASA | American Society of Anesthesiologists score |
NMS | New Mobility Score |
pre-OP | Preoperative |
post-OP | Postoperative |
References
- United Nations Department for Economic and Social Affairs. World Population Prospects 2024: Summary of Results; United Nations: New York, NY, USA, 2025; ISBN 978-92-1-003169-1.
- Karthika, M.; Abraham, J.; Kodali, P.B.; Mathews, E. Emerging Trends of Chronic Diseases and Their Care Among Older Persons Globally. In Handbook of Aging, Health and Public Policy; Springer Nature: Singapore, 2023; pp. 1–24. ISBN 978-981-16-1914-4. [Google Scholar]
- Dhanani, H.; Tabata-Kelly, M.; Jarman, M.; Cooper, Z. A Scoping Review of Hospital-Based Geriatric-Centered Interventions on Trauma Surgery Services. J. Am. Geriatr. Soc. 2025, 73, 1250–1266. [Google Scholar] [CrossRef]
- Kim, D.H.; Rockwood, K. Frailty in Older Adults. N. Engl. J. Med. 2024, 391, 538–548. [Google Scholar] [CrossRef]
- Chan, L.L.Y.; Choi, T.C.M.; Lord, S.R.; Brodie, M.A. Development and Large-Scale Validation of the Watch Walk Wrist-Worn Digital Gait Biomarkers. Sci. Rep. 2022, 12, 16211. [Google Scholar] [CrossRef] [PubMed]
- Kluge, F.; Brand, Y.E.; Micó-Amigo, M.E.; Bertuletti, S.; D’Ascanio, I.; Gazit, E.; Bonci, T.; Kirk, C.; Küderle, A.; Palmerini, L.; et al. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study. JMIR Form. Res. 2024, 8, e50035. [Google Scholar] [CrossRef]
- MacLean, M.K.; Rehman, R.Z.U.; Kerse, N.; Taylor, L.; Rochester, L.; Del Din, S. Walking Bout Detection for People Living in Long Residential Care: A Computationally Efficient Algorithm for a 3-Axis Accelerometer on the Lower Back. Sensors 2023, 23, 8973. [Google Scholar] [CrossRef]
- Micó-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Kirk, C.; Soltani, A.; Küderle, A.; Gazit, E.; Salis, F.; Alcock, L.; et al. Assessing Real-World Gait with Digital Technology? Validation, Insights and Recommendations from the Mobilise-D Consortium. J. Neuroeng. Rehabil. 2023, 20, 78. [Google Scholar] [CrossRef]
- Kirk, C.; Küderle, A.; Micó-Amigo, M.E.; Bonci, T.; Paraschiv-Ionescu, A.; Ullrich, M.; Soltani, A.; Gazit, E.; Salis, F.; Alcock, L.; et al. Mobilise-D Insights to Estimate Real-World Walking Speed in Multiple Conditions with a Wearable Device. Sci. Rep. 2024, 14, 1754. [Google Scholar] [CrossRef]
- Friedrich, B.; Lau, S.; Elgert, L.; Bauer, J.M.; Hein, A. A Deep Learning Approach for TUG and SPPB Score Prediction of (Pre-) Frail Older Adults on Real-Life IMU Data. Healthcare 2021, 9, 149. [Google Scholar] [CrossRef]
- Arshad, M.Z.; Jung, D.; Park, M.; Shin, H.; Kim, J.; Mun, K.-R. Gait-Based Frailty Assessment Using Image Representation of IMU Signals and Deep CNN. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual Event, 1–5 November 2021; pp. 1874–1879. [Google Scholar]
- Sczuka, K.S.; Schneider, M.; Bourke, A.K.; Mellone, S.; Kerse, N.; Helbostad, J.L.; Becker, C.; Klenk, J. Template-Based Recognition of Human Locomotion in IMU Sensor Data Using Dynamic Time Warping. Sensors 2021, 21, 2601. [Google Scholar] [CrossRef] [PubMed]
- Sharifi Renani, M.; Myers, C.A.; Zandie, R.; Mahoor, M.H.; Davidson, B.S.; Clary, C.W. Deep Learning in Gait Parameter Prediction for OA and TKA Patients Wearing IMU Sensors. Sensors 2020, 20, 5553. [Google Scholar] [CrossRef] [PubMed]
- Leinert, C.; Fotteler, M.; Kocar, T.D.; Dallmeier, D.; Kestler, H.A.; Wolf, D.; Gebhard, F.; Uihlein, A.; Steger, F.; Kilian, R.; et al. Supporting SURgery with GEriatric Co-Management and AI (SURGE-Ahead): A Study Protocol for the Development of a Digital Geriatrician. PLoS ONE 2023, 18, e0287230. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Liebl, M.E.; Elmer, N.; Schroeder, I.; Schwedtke, C.; Baack, A.; Reisshauer, A. Introduction of the Charité Mobility Index (CHARMI)—A Novel Clinical Mobility Assessment for Acute Care Rehabilitation. PLoS ONE 2016, 11, e0169010. [Google Scholar] [CrossRef]
- Adamowicz, L.; Christakis, Y.; Czech, M.D.; Adamusiak, T. SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing. JMIR mHealth uHealth 2022, 10, e36762. [Google Scholar] [CrossRef] [PubMed]
- Vert, A.; Weber, K.S.; Thai, V.; Turner, E.; Beyer, K.B.; Cornish, B.F.; Godkin, F.E.; Wong, C.; McIlroy, W.E.; Van Ooteghem, K. Detecting Accelerometer Non-Wear Periods Using Change in Acceleration Combined with Rate-of-Change in Temperature. BMC Med. Res. Methodol. 2022, 22, 147. [Google Scholar] [CrossRef]
- Adamowicz, L.; Karahanoglu, F.I.; Cicalo, C.; Zhang, H.; Demanuele, C.; Santamaria, M.; Cai, X.; Patel, S. Assessment of Sit-to-Stand Transfers during Daily Life Using an Accelerometer on the Lower Back. Sensors 2020, 20, 6618. [Google Scholar] [CrossRef]
- Küderle, A.; Tasca, P.; Bicer, M.; Kirk, C.; Megaritis, D.; Hinchliffe, C.; Stihi, A.; Muecke, A.; Babar, Z.; Kluge, F.; et al. MobGap 2025. Available online: https://github.com/mobilise-d/mobgap/ (accessed on 28 June 2025).
- Collins, G.S.; Moons, K.G.M.; Dhiman, P.; Riley, R.D.; Beam, A.L.; Van Calster, B.; Ghassemi, M.; Liu, X.; Reitsma, J.B.; Van Smeden, M.; et al. TRIPOD+AI Statement: Updated Guidance for Reporting Clinical Prediction Models That Use Regression or Machine Learning Methods. BMJ 2024, e078378. [Google Scholar] [CrossRef]
- Hollmann, N.; Müller, S.; Purucker, L.; Krishnakumar, A.; Körfer, M.; Hoo, S.B.; Schirrmeister, R.T.; Hutter, F. Accurate Predictions on Small Data with a Tabular Foundation Model. Nature 2025, 637, 319–326. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Pahlevani, M.; Taghavi, M.; Vanberkel, P. A Systematic Literature Review of Predicting Patient Discharges Using Statistical Methods and Machine Learning. Health Care Manag. Sci. 2024, 27, 458–478. [Google Scholar] [CrossRef] [PubMed]
- Duffy, L.; Gajree, S.; Langhorne, P.; Stott, D.J.; Quinn, T.J. Reliability (Inter-Rater Agreement) of the Barthel Index for Assessment of Stroke Survivors: Systematic Review and Meta-Analysis. Stroke 2013, 44, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Kamath, A.; Pathak, S.; Vieillard, N.; Merhej, R.; Perrin, S.; Matejovicova, T.; Ramé, A.; Rivière, M.; Rouillard, L.; Mesnard, T.; et al. Gemma 3 Technical Report 2025. arXiv 2025, arXiv:2503.19786. [Google Scholar]
Mean (±sd) | n (%) | |
---|---|---|
Age (years) | 79.05 (±6.4) | |
Sex (male) | 17 (43.6%) | |
Trauma Surgery (Yes/No) | 29 (74.4%) | |
General & Visceral Surgery (Yes/No) | 3 (7.7%) | |
Urology (Yes/No) | 7 (17.9%) | |
Emergency OP (Yes/No) | 19 (48.7%) | |
BMI (kg/m2) | 26.52 (±4.69) | |
NRS (Yes/No) | 13 (33.3%) | |
MoCA 5-min (score) | 21.26 (±6.39) | |
Dementia (Yes/No) | 2 (5.1%) | |
PHQ4 (score) | 2.67 (±2.45) | |
ISAR (score) | 2.97 (±1.01) | |
CFS (score) | 3.36 (±1.68) | |
ASA (class) | 1.84 (±0.49) | |
Number of Medications (n) | 8.87 (±3.5) | |
Care Level (class) | 0.51 (±0.91) | |
Living Alone (Yes/No) | 16 (41.0%) | |
Barthel Index pre-OP (score) | 93.59 (±11.24) | |
Barthel Index post-OP day 3 (score) | 59.46 (±24.32) | |
CHARMI pre-OP (score) | 7.51 (±3.24) | |
CHARMI post-OP day 3 (score) | 4.91 (±2.84) | |
NMS (score) | 7.10 (±2.06) | |
Falls (Yes/No) | 23 (59.0%) | |
Sensor Worn (days) | 3.10 (±1.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocar, T.D.; Brefka, S.; Leinert, C.; Rieger, U.L.; Kestler, H.; Dallmeier, D.; Klenk, J.; Denkinger, M. Deep Learning Predicts Postoperative Mobility, Activities of Daily Living, and Discharge Destination in Older Adults from Sensor Data. Sensors 2025, 25, 5021. https://doi.org/10.3390/s25165021
Kocar TD, Brefka S, Leinert C, Rieger UL, Kestler H, Dallmeier D, Klenk J, Denkinger M. Deep Learning Predicts Postoperative Mobility, Activities of Daily Living, and Discharge Destination in Older Adults from Sensor Data. Sensors. 2025; 25(16):5021. https://doi.org/10.3390/s25165021
Chicago/Turabian StyleKocar, Thomas Derya, Simone Brefka, Christoph Leinert, Utz Lovis Rieger, Hans Kestler, Dhayana Dallmeier, Jochen Klenk, and Michael Denkinger. 2025. "Deep Learning Predicts Postoperative Mobility, Activities of Daily Living, and Discharge Destination in Older Adults from Sensor Data" Sensors 25, no. 16: 5021. https://doi.org/10.3390/s25165021
APA StyleKocar, T. D., Brefka, S., Leinert, C., Rieger, U. L., Kestler, H., Dallmeier, D., Klenk, J., & Denkinger, M. (2025). Deep Learning Predicts Postoperative Mobility, Activities of Daily Living, and Discharge Destination in Older Adults from Sensor Data. Sensors, 25(16), 5021. https://doi.org/10.3390/s25165021