Augmented Bayesian Data Selection: Improving Machine Learning Predictions of Bragg Grating Spectra
Abstract
1. Introduction
2. Materials and Methods
3. XGBoost-Based Prediction of Bragg Spectra
3.1. Data Generation Fit Comparison: Gaussian vs. Polynomial
3.2. ML Performance: Parameter Prediction vs. Curve Prediction
4. Data Acquisition
4.1. Bayesian Optimization for Database Generation
4.2. Augmented BBS for Improved Database Generation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABBS | Augmented Bayesian-based sampling |
BBS | Bayesian-based sampling |
BO | Bayesian Optimization |
CMT | Coupled mode theory |
GPR | Gaussian process regression |
ML | Machine learning |
RMSE | Root mean squared error |
UCB | Upper confidence bound |
XGBoost | Extreme gradient boosting |
References
- Zhang, W.; Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 2018, 9, 1396. [Google Scholar] [CrossRef] [PubMed]
- Knall, J.M.; Engholm, M.; Boilard, T.; Bernier, M.; Digonnet, M.J. Radiation-balanced silica fiber amplifier. Phys. Rev. Lett. 2021, 127, 013903. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Advances in waveguide Bragg grating structures, platforms, and applications: An up-to-date appraisal. Biosensors 2022, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- La, T.A.; Ülgen, O.; Shnaiderman, R.; Ntziachristos, V. Bragg grating etalon-based optical fiber for ultrasound and optoacoustic detection. Nat. Commun. 2024, 15, 7521. [Google Scholar] [CrossRef] [PubMed]
- Alhussein, A.N.; Qaid, M.R.; Agliullin, T.; Valeev, B.; Morozov, O.; Sakhabutdinov, A. Fiber Bragg Grating Sensors: Design, Applications, and Comparison with Other Sensing Technologies. Sensors 2025, 25, 2289. [Google Scholar] [CrossRef]
- Kumar, S.; Rathee, S.; Arora, P.; Sharma, D. A comprehensive review on fiber bragg grating and photodetector in optical communication networks. J. Opt. Commun. 2022, 43, 585–592. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, J.S.; Ahn, S.; Cho, S.Y.; Kim, M.S.; Yoo, J.; Jeon, M.Y. Simultaneous temperature and strain measurement in fiber Bragg grating via wavelength-swept laser and machine learning. IEEE Sens. J. 2024, 24, 27516–27524. [Google Scholar] [CrossRef]
- Theodosiou, A. Recent advances in fiber Bragg grating sensing. Sensors 2024, 24, 532. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Xu, L.; Yang, L.; Dai, S. Frequency-stabilized and high-efficiency Brillouin random fiber laser based on a fiber Bragg grating ring. Infrared Phys. Technol. 2025, 147, 105799. [Google Scholar] [CrossRef]
- Bazakutsa, A.; Rybaltovsky, A.; Belkin, M.; Lipatov, D.; Lobanov, A.; Abramov, A.; Butov, O. Highly-photosensitive Er/Yb-codoped fiber for single-frequency continuous-wave fiber lasers with a short cavity for telecom applications. Opt. Mater. 2023, 138, 113669. [Google Scholar] [CrossRef]
- Chubchev, E.D.; Tomyshev, K.A.; Nechepurenko, I.A.; Dorofeenko, A.V.; Butov, O.V. Machine learning approach to data processing of TFBG-assisted SPR sensors. J. Light. Technol. 2022, 40, 3046–3054. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, N.; Xie, J.; Han, X.; Yan, X.; You, D.; Li, K.; Vai, M.I.; Tam, K.W.; Guo, T.; et al. Improving accuracy and sensitivity of a tilted fiber Bragg grating refractometer using cladding mode envelope derivative. J. Light. Technol. 2023, 41, 4123–4129. [Google Scholar] [CrossRef]
- Fasseaux, H.; Loyez, M.; Caucheteur, C. Machine Learning approach for fiber-based biosensor. In Optical Fiber Sensors; Optica Publishing Group: Washington, DC, USA, 2023; p. W4-4. [Google Scholar]
- Leal-Junior, A.; Avellar, L.; Frizera, A.; Caucheteur, C.; Marques, C. Machine learning approach for automated data analysis in tilted FBGs. Opt. Fiber Technol. 2024, 84, 103756. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef]
- Frazier, P.I. Bayesian optimization. In Recent Advances in Optimization and Modeling of Contemporary Problems; Informs: Catonsville, MD, USA, 2018; pp. 255–278. [Google Scholar]
- Garnett, R. Bayesian Optimization; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Lin, W.; Liu, Y.; Yu, F.; Zhao, F.; Liu, S.; Liu, Y.; Chen, J.; Vai, M.I.; Shum, P.P.; Shao, L.Y. Temperature fiber sensor based on 1-D CNN incorporated time-stretch method for accurate detection. IEEE Sens. J. 2023, 23, 5773–5779. [Google Scholar] [CrossRef]
- Adibnia, E.; Ghadrdan, M.; Mansouri-Birjandi, M.A. Chirped apodized fiber Bragg gratings inverse design via deep learning. Opt. Laser Technol. 2025, 181, 111766. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Wei, H.; Teng, C.; Yu, Q.; Luo, Z.; Lian, Z.; Qu, H.; Caucheteur, C. Tilted Bragg grating in a glycerol-infiltrated specialty optical fiber for temperature and strain measurements. Opt. Lett. 2024, 49, 2869–2872. [Google Scholar] [CrossRef]
- Ngo, N.Q.; Zheng, R.T.; Ng, J.; Tjin, S.; Binh, L.N. Optimization of fiber Bragg gratings using a hybrid optimization algorithm. J. Light. Technol. 2007, 25, 799–802. [Google Scholar] [CrossRef]
- Nechepurenko, I.; Rahimof, Y.; Mahani, M.; Wenzel, S.; Wicht, A. Finite-difference time-domain simulations of surface Bragg gratings. In Proceedings of the 2023 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 18–21 September 2023; pp. 3–4. [Google Scholar]
- Rahimof, Y.; Nechepurenko, I.; Mahani, M.R.; Tsarapkin, A.; Wicht, A. The study of 3D FDTD modelling of large-scale Bragg gratings validated by experimental measurements. J. Phys. Photonics 2024, 6, 045024. [Google Scholar] [CrossRef]
- Brückerhoff-Plückelmann, F.; Buskasper, T.; Römer, J.; Krämer, L.; Malik, B.; McRae, L.; Kürpick, L.; Palitza, S.; Schuck, C.; Pernice, W. General design flow for waveguide Bragg gratings. Nanophotonics 2025, 14, 297–304. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar]
- Kashyap, R. Fiber Bragg Gratings; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Kogelnik, H.; Shank, C.V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 1972, 43, 2327–2335. [Google Scholar] [CrossRef]
- Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 2003, 9, 919–933. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mashanovitch, M.L. Diode Lasers and Photonic Integrated Circuits; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 218. [Google Scholar]
- Siegman, A.E. Lasers; University Science Books: Melville, NY, USA, 1986. [Google Scholar]
- Butov, O.V.; Tomyshev, K.; Nechepurenko, I.; Dorofeenko, A.V.; Nikitov, S.A. Tilted fiber Bragg gratings and their sensing applications. Uspekhi Fiz. Nauk. 2022, 192, 1385–1398. [Google Scholar] [CrossRef]
- Rahimof, Y.; Nechepurenko, I.A.; Mahani, M.R.; Wicht, A. Coupled Mode Theory Fitting of Bragg Grating Spectra Obtained with 3D FDTD Method. In CLEO: Applications and Technology; Optica Publishing Group: Washington, DC, USA, 2024; p. JTh2A-208. [Google Scholar]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Tang, Y.; Kojima, K.; Koike-Akino, T.; Wang, Y.; Wu, P.; Xie, Y.; Tahersima, M.H.; Jha, D.K.; Parsons, K.; Qi, M. Generative deep learning model for inverse design of integrated nanophotonic devices. Laser Photonics Rev. 2020, 14, 2000287. [Google Scholar] [CrossRef]
- Mengu, D.; Sakib Rahman, M.S.; Luo, Y.; Li, J.; Kulce, O.; Ozcan, A. At the intersection of optics and deep learning: Statistical inference, computing, and inverse design. Adv. Opt. Photonics 2022, 14, 209–290. [Google Scholar] [CrossRef]
- Mahani, M.; Nechepurenko, I.A.; Rahimof, Y.; Wicht, A. Frequency shift detection mechanism in GaAs waveguides with mode-coupled Bragg gratings. Opt. Express 2025, 33, 13519–13529. [Google Scholar] [CrossRef]
- Li, S.; Luo, M.; Lee, S.S. Cycle cGAN-driven inverse design of 1 × 2 MMI couplers with arbitrary power-splitting ratios and high efficiency. Opt. Express 2025, 33, 18556–18572. [Google Scholar] [CrossRef]
- MacLellan, B.; Roztocki, P.; Belleville, J.; Romero Cortés, L.; Ruscitti, K.; Fischer, B.; Azaña, J.; Morandotti, R. Inverse Design of Photonic Systems. Laser Photonics Rev. 2024, 18, 2300500. [Google Scholar] [CrossRef]
- Hammond, A.M.; Camacho, R.M. Designing integrated photonic devices using artificial neural networks. Opt. Express 2019, 27, 29620–29638. [Google Scholar] [CrossRef]
- Dey, K.; Nikhil, V.; Chaudhuri, P.R.; Roy, S. Demonstration of a fast-training feed-forward machine learning algorithm for studying key optical properties of FBG and predicting precisely the output spectrum. Opt. Quantum Electron. 2023, 55, 16. [Google Scholar] [CrossRef]
- Mahani, M.; Nechepurenko, I.; Rahimof, Y.; Wicht, A. Designing rectangular surface bragg gratings using machine learning models. In Proceedings of the 2023 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 18–21 September 2023; pp. 69–70. [Google Scholar]
- Liu, Z.; Zhu, D.; Raju, L.; Cai, W. Tackling photonic inverse design with machine learning. Adv. Sci. 2021, 8, 2002923. [Google Scholar] [CrossRef]
- Mahani, M.; Rahimof, Y.; Wenzel, S.; Nechepurenko, I.; Wicht, A. Data-Efficient Machine Learning Algorithms for the Design of Surface Bragg Gratings. ACS Appl. Opt. Mater. 2023, 1, 1474–1484. [Google Scholar] [CrossRef]
- Adibnia, E.; Mansouri-Birjandi, M.A.; Ghadrdan, M.; Jafari, P. A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches. Sci. Rep. 2024, 14, 5787. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, M.; Fan, J.A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 2021, 6, 679–700. [Google Scholar] [CrossRef]
- Head, S.; Keshavarz Hedayati, M. Inverse design of distributed bragg reflectors using deep learning. Appl. Sci. 2022, 12, 4877. [Google Scholar] [CrossRef]
- Yu, Q.; Norris, B.R.; Edvell, G.; Luo, L.; Bland-Hawthorn, J.; Leon-Saval, S.G. Inverse design and optimization of an aperiodic multi-notch fiber Bragg grating using neural networks. Appl. Opt. 2024, 63, D50–D58. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, M.; Porkodi, V. Computational Design of Strip Waveguide Bragg Gratings Using Neural Networks for Hexagonal Shaped Refractive Index Biosensors Based Blood Sample Detection. ECS J. Solid State Sci. Technol. 2025, 14, 037004. [Google Scholar] [CrossRef]
- Mahani, M.; Nechepurenko, I.A.; Rahimof, Y.; Wicht, A. Optimizing data acquisition: A Bayesian approach for efficient machine learning model training. Mach. Learn. Sci. Technol. 2024, 5, 035013. [Google Scholar] [CrossRef]
- Chen, R.C.; Dewi, C.; Huang, S.W.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Theng, D.; Bhoyar, K.K. Feature selection techniques for machine learning: A survey of more than two decades of research. Knowl. Inf. Syst. 2024, 66, 1575–1637. [Google Scholar] [CrossRef]
- Mahani, M.; Nechepurenko, I.A.; Flisgen, T.; Wicht, A. Combining Bayesian Optimization, Singular Value Decomposition, and Machine Learning for Advanced Optical Design. ACS Photonics 2025, 12, 1812–1821. [Google Scholar] [CrossRef]
- Li, Z.; Xue, Y. Health assessment and health trend prediction of wind turbine bearing based on BO-BiLSTM model. Sci. Rep. 2025, 15, 9169. [Google Scholar] [CrossRef]
- Zhang, D.; Qin, F.; Zhang, Q.; Liu, Z.; Wei, G.; Xiao, J.J. Segmented Bayesian optimization of meta-gratings for sub-wavelength light focusing. J. Opt. Soc. Am. B 2019, 37, 181–187. [Google Scholar] [CrossRef]
- Rickert, L.; Betz, F.; Plock, M.; Burger, S.; Heindel, T. High-performance designs for fiber-pigtailed quantum-light sources based on quantum dots in electrically-controlled circular Bragg gratings. Opt. Express 2023, 31, 14750–14770. [Google Scholar] [CrossRef]
- Grebot, J.; Helleboid, R.; Mugny, G.; Nicholson, I.; Mouron, L.H.F.; Lanteri, S.; Rideau, D. Bayesian Optimization of Light Grating for High Performance Single-Photon Avalanche Diodes. In Proceedings of the 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kobe, Japan, 27–29 September 2023; pp. 365–368. [Google Scholar]
- Nechepurenko, I.; Mahani, M.R.; Rahimof, Y.; Wicht, A. Simulation Dataset for Bragg Grating ML Modeling. 2025. Available online: https://github.com/NechepurenkoIgor/Data-Files-for-Augmented-Bayesian-Data-Selection (accessed on 29 July 2025).
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Zhang, X.; Yan, C.; Gao, C.; Malin, B.A.; Chen, Y. Predicting missing values in medical data via XGBoost regression. J. Healthc. Informatics Res. 2020, 4, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Sharma, A.K.; Prajapati, Y.K. Intervention of machine learning and explainable artificial intelligence in fiber optic sensor device data for systematic and comprehensive performance-optimization. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
Fitting Method | Fixed Bandwidth | Floating Bandwidth | ||
---|---|---|---|---|
av. | av. RMSE | av. | av. RMSE | |
Gaussian | 0.9977 | 8.1 × 10−4 | 0.9976 | 1.1 × 10−3 |
Polynomial () | 0.9864 | 1.6 × 10−3 | 0.9763 | 2.5 × 10−3 |
Polynomial () | 0.9997 | 2.2 × 10−4 | 0.9998 | 3.0 × 10−4 |
Polynomial () | 0.9999 | 8.7 × 10−5 | 0.9998 | 1.8 × 10−5 |
Fitting Method | Floating Bandwidth | |||||
---|---|---|---|---|---|---|
av. | st. | av. RMSE | st. RMSE | av. MAPE | st. MAPE | |
Gaussian | 0.9914 | 2.1 × 10−3 | 4.8 × 10−5 | 2.0 × 10−6 | 0.33 | 0.14 |
Polynomial () | 0.9773 | 5.9 × 10−3 | 9.7 × 10−5 | 3.0 × 10−5 | 3.08 | 2.46 |
Polynomial () | 0.9859 | 8.0 × 10−3 | 3.1 × 10−3 | 2.0 × 10−3 | 2.8 | 2.14 |
Polynomial () | 0.9549 | 8.1 × 10−3 | 6.3 × 10−3 | 1.2 × 10−3 | 6.3 | 2.25 |
Fitting Method | Parameter Prediction | Curve Prediction | ||
---|---|---|---|---|
RMSE | RMSE | |||
Gaussian | 0.9914 | 4.8 × 10−5 | 0.9917 | 3.85 × 10−6 |
Polynomial () | 0.9773 | 9.7 × 10−5 | 0.9648 | 6.49 × 10−6 |
Polynomial () | 0.9859 | 3.1 × 10−3 | 0.9544 | 3.71 × 10−6 |
Polynomial () | 0.9549 | 6.3 × 10−3 | 0.9515 | 1.79 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechepurenko, I.; Mahani, M.R.; Rahimof, Y.; Wicht, A. Augmented Bayesian Data Selection: Improving Machine Learning Predictions of Bragg Grating Spectra. Sensors 2025, 25, 4970. https://doi.org/10.3390/s25164970
Nechepurenko I, Mahani MR, Rahimof Y, Wicht A. Augmented Bayesian Data Selection: Improving Machine Learning Predictions of Bragg Grating Spectra. Sensors. 2025; 25(16):4970. https://doi.org/10.3390/s25164970
Chicago/Turabian StyleNechepurenko, Igor, M. R. Mahani, Yasmin Rahimof, and Andreas Wicht. 2025. "Augmented Bayesian Data Selection: Improving Machine Learning Predictions of Bragg Grating Spectra" Sensors 25, no. 16: 4970. https://doi.org/10.3390/s25164970
APA StyleNechepurenko, I., Mahani, M. R., Rahimof, Y., & Wicht, A. (2025). Augmented Bayesian Data Selection: Improving Machine Learning Predictions of Bragg Grating Spectra. Sensors, 25(16), 4970. https://doi.org/10.3390/s25164970