Autonomous Exploration in Unknown Indoor 2D Environments Using Harmonic Fields and Monte Carlo Integration
Abstract
1. Introduction
1.1. Related Works
1.2. Contributions
1.3. Notations
1.3.1. Mathematic Symbols
1.3.2. Pseudocode Formation
2. Problem Formulation
2.1. Workspace and Kinematics
2.2. Explored Region
2.3. Map Representation
3. Solving PDEs with Monte Carlo Integration
3.1. Linear Elliptic Equation
3.2. The Walking on Sphere
Algorithm 1 WalkingOnSpherePoissonEquation |
|
Algorithm 2 WalkingOnSphereGradientSolution |
|
4. Implementation of the Exploration Process
4.1. Control Architecture
4.2. Velocity Control Law
4.3. Structure of Explored Region and Definition of Hybrid Visibility Graph
Algorithm 3 DefineHybricVisibilityGraph |
|
4.4. Dirichlet Boundary Value and Source Function
4.5. Dead-End Region Algorithm
4.6. Safety and Completeness of Exploration
5. Tools for Real Experiment
6. Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-SLAM | Active Simultaneous Localization and Mapping |
BVP | Boundary Value Problem |
FMBEM | Fast Multipole accelerated Boundary Element Method |
HPF | Harmonic Potential Field |
HVG | Hybrid Visibility Graph |
MCI | Monte Carlo Integration |
NBV | Next Best of View |
PDE | Partial Differential Equation |
RL | Reinforcement Learning |
ROS | Robot Operating System |
RRT | Rapidly Exploring Random Tree |
SLAM | Simultaneous Localization and Mapping |
WoS | Walking on Sphere |
Appendix A. Monte Carlo Integration
Appendix B. Harmonic Green Function in 2D
References
- Lluvia, I.; Lazkano, E.; Ansuategi, A. Active Mapping and Robot Exploration: A Survey. Sensors 2021, 21, 2445. [Google Scholar] [CrossRef] [PubMed]
- Son, D.T.; Anh, M.T.; Tu, D.D.; Van Chuong, L.; Cuong, T.H.; Phuong, H.S. The Practice of Mapping-based Navigation System for Indoor Robot with RPLIDAR and Raspberry Pi. In Proceedings of the 2021 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 26–28 August 2021; pp. 279–282. [Google Scholar] [CrossRef]
- Eldemiry, A.; Zou, Y.; Li, Y.; Wen, C.Y.; Chen, W. Autonomous Exploration of Unknown Indoor Environments for High-Quality Mapping Using Feature-Based RGB-D SLAM. Sensors 2022, 22, 5117. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xie, F.; Huang, Y.; Zhao, J.; Luo, H.; Yan, X.; Zhao, F.; Lv, P. A novel autonomous exploration algorithm via LiDAR/IMU SLAM and hierarchical subsystem for mobile robot in unknown indoor environments. Meas. Sci. Technol. 2025, 36, 016307. [Google Scholar] [CrossRef]
- Li, Z.; Xin, J.; Li, N. Autonomous Exploration and Mapping for Mobile Robots via Cumulative Curriculum Reinforcement Learning. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 7495–7500. [Google Scholar] [CrossRef]
- Zhu, D.; Li, T.; Ho, D.; Wang, C.; Meng, M.Q.H. Deep Reinforcement Learning Supervised Autonomous Exploration in Office Environments. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 7548–7555. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, C.; Zhu, P.; Zeng, Z.; Zhang, H. Autonomous Exploration of Mobile Robots via Deep Reinforcement Learning Based on Spatiotemporal Information on Graph. Appl. Sci. 2021, 11, 8299. [Google Scholar] [CrossRef]
- Cimurs, R.; Suh, I.H.; Lee, J.H. Goal-Driven Autonomous Exploration Through Deep Reinforcement Learning. IEEE Robot. Autom. Lett. 2022, 7, 730–737. [Google Scholar] [CrossRef]
- Zuo, S.; Niu, J.; Ren, L.; Ouyang, Z. Fast Robot Hierarchical Exploration Based on Deep Reinforcement Learning. In Proceedings of the 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; pp. 138–143. [Google Scholar] [CrossRef]
- Li, Z.; Xin, J.; Li, N. End-to-End Autonomous Exploration for Mobile Robots in Unknown Environments through Deep Reinforcement Learning. In Proceedings of the 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR), Guiyang, China, 17–22 July 2022; pp. 475–480. [Google Scholar] [CrossRef]
- Liu, J.; Lv, Y.; Yuan, Y.; Chi, W.; Chen, G.; Sun, L. An Efficient Robot Exploration Method Based on Heuristics Biased Sampling. IEEE Trans. Ind. Electron. 2023, 70, 7102–7112. [Google Scholar] [CrossRef]
- Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, D.; Shimada, K. Autonomous UAV Exploration of Dynamic Environments Via Incremental Sampling and Probabilistic Roadmap. IEEE Robot. Autom. Lett. 2021, 6, 2729–2736. [Google Scholar] [CrossRef]
- Lu, Y.; Li, C.; Li, B.; Qiao, W. Sample-based Frontier-Block Detection for Autonomous Robot Exploration. In Proceedings of the 2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE), Lanzhou, China, 18–20 September 2021; pp. 73–78. [Google Scholar] [CrossRef]
- Tran, D.H.Q.; Phan, H.A.; Van, H.D.; Van Duong, T.; Bui, T.T.; Thanh, V.N.T. An Enhanced Sampling-Based Method with Modified Next-Best View Strategy For 2D Autonomous Robot Exploration. In Proceedings of the 2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE), Phitsanulok, Thailand, 28 June–1 July 2023; pp. 225–230. [Google Scholar] [CrossRef]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ‘Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA, 10–11 July 1997; pp. 146–151. [Google Scholar] [CrossRef]
- Biner, S.B. Introduction to Numerical Solution of Partial Differential Equations. In Programming Phase-Field Modeling; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–11. [Google Scholar] [CrossRef]
- Prestes, E.; Idiart, M.; Engel, P.; Trevisan, M. Exploration technique using potential fields calculated from relaxation methods. In Proceedings of the Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), Maui, HI, USA, 29 October–3 November 2001; Volume 4, pp. 2012–2017. [Google Scholar] [CrossRef]
- Maffei, R.; Jorge, V.A.M.; Prestes, E.; Kolberg, M. Integrated exploration using time-based potential rails. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3694–3699. [Google Scholar] [CrossRef]
- Prestes, E.; Engel, P.M. Exploration driven by local potential distortions. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1122–1127. [Google Scholar] [CrossRef]
- Jorge, V.A.M.; Maffei, R.; Franco, G.S.; Daltrozo, J.; Giambastiani, M.; Kolberg, M.; Prestes, E. Ouroboros: Using potential field in unexplored regions to close loops. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2125–2131. [Google Scholar] [CrossRef]
- Grontas, P.D.; Vlantis, P.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Computationally Efficient Harmonic-Based Reactive Exploration. IEEE Robot. Autom. Lett. 2020, 5, 2280–2285. [Google Scholar] [CrossRef]
- Kopo, R.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Harmonic Field-based Provable Exploration of 3D Indoor Environments. arXiv 2023, arXiv:2303.07042. [Google Scholar] [CrossRef]
- Rousseas, P.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Trajectory Planning in Unknown 2D Workspaces: A Smooth, Reactive, Harmonics-Based Approach. IEEE Robot. Autom. Lett. 2022, 7, 1992–1999. [Google Scholar] [CrossRef]
- Rousseas, P.; Panetsos, F.; Vlachos, C.; Karras, G.C.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Frontier-Based Exploration using Harmonic Transformations. In Proceedings of the 2025 33nd Mediterranean Conference on Control and Automation (MED), Tangier, Morocco, 10–13 June 2025. [Google Scholar]
- Sawhney, R.; Crane, K. Monte Carlo geometry processing: A grid-free approach to PDE-based methods on volumetric domains. ACM Trans. Graph. 2020, 39, 123. [Google Scholar] [CrossRef]
- Pharr, M.; Jakob, W.; Humphreys, G. Physically Based Rendering: From Theory to Implementation, 3rd ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2016. [Google Scholar]
- Sawhney, R.; Miller, B.; Gkioulekas, I.; Crane, K. Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions. ACM Trans. Graph. 2023, 42, 80. [Google Scholar] [CrossRef]
- Miller, B.; Sawhney, R.; Crane, K.; Gkioulekas, I. Walkin’ Robin: Walk on Stars with Robin Boundary Conditions. ACM Trans. Graph. 2024, 43, 41. [Google Scholar] [CrossRef]
- Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; Intelligent Robotics and Autonomous Agents; MIT Press: Cambridge, MA, USA; London, UK, 2006. [Google Scholar]
- DeLaurentis, J.M.; Romero, L.A. A Monte Carlo method for Poisson’s equation. J. Comput. Phys. 1990, 90, 123–140. [Google Scholar] [CrossRef]
- Bell, D.R. The Malliavin Calculus; Dover Publications: Garden City, NY, USA, 2012. [Google Scholar]
- Kakutani, S. Two-dimensional Brownian motion and harmonic functions. Proc. Jpn. Acad. Ser. Math. Sci. 1944, 20, 706–714. [Google Scholar] [CrossRef]
- Muller, M.E. Some Continuous Monte Carlo Methods for the Dirichlet Problem. Ann. Math. Stat. 1956, 27, 569–589. [Google Scholar] [CrossRef]
- Binder, I.; Braverman, M. The rate of convergence of the Walk on Spheres Algorithm. Geom. Funct. Anal. 2012, 22, 558–587. [Google Scholar] [CrossRef]
- Lantuejoul, C.; Beucher, S. On the use of the geodesic metric in image analysis. J. Microsc. 1981, 121, 39–49. [Google Scholar] [CrossRef]
- ActivMedia Robotics. AmigoBOT Users Guide; ActivMedia Robotics: Peterborough, NH, USA, 2003; Available online: https://shorturl.at/6Yqjj (accessed on 6 August 2025).
- Bai, S.; Wang, J.; Chen, F.; Englot, B. Information-theoretic exploration with Bayesian optimization. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; IEEE Press: New York, NY, USA, 2016; pp. 1816–1822. [Google Scholar] [CrossRef]
- Home|Bitcraze. Available online: https://www.bitcraze.io/ (accessed on 1 June 2025).
Exploration Parameter Values | Part A: Matlab | Part B: Real-World | Part C: Comparison | |||
---|---|---|---|---|---|---|
Simulation 1 Labyrinth |
Simulation 2 Workspace with Obstacles |
Simulation 1 Labyrinth |
Simulation 2 Workspace with Obstacles | |||
Agent | ||||||
[4.0 m, 1.0 m, 0.0rad] | [−4.25 m, −4.25 m, 0.0 rad] | [0 m, 0 m, 0 rad] | [0 m, 0 m, 0 rad] | [−4.50 m, 0.92 m, 0 rad] | ||
0.3 m | 0.3 m | 0.3 m | 0.3 m | 0 m | ||
Range Sensor | ||||||
4 m | 4 m | 3 m | 3 m | 2 m | ||
Map | ||||||
0.0833 m/cell | 0.0833 m/cell | 0.05 m/cell | 0.05 m/cell | 0.0667 m/cell | ||
WoS | ||||||
10 | 10 | 8 | 8 | 8 | ||
N | 100 | 100 | 100 | 100 | 100 | |
0.667 m | 0.667 m | 0.05 m | 0.05 m | 0.0533 m | ||
Control Law | ||||||
0.3 m | 0.3 m | 0.3 m | 0.3 m | 0.05 m | ||
Boundary and Source Condition | ||||||
5 | 5 | 5 | 5 | |||
40 | 40 | 16 | 20 | 50 | ||
Dead-End | ||||||
1 | 1 | 10 | 10 | 10 |
Simulation 1: Labyrinth | Simulation 2: Workspace with Obstacles | |
---|---|---|
Time Average | ||
Extract Data | 0.0683 s | 0.0109 s |
WoS Algorithm | 0.0859 s | 0.1419 s |
Dead-End | 0.0152 s | 0.1134 s |
Iteration Process | 0.1695 s | 0.2662 s |
Total Results | ||
Iterations | 149 | 180 |
Trajectory Length | 36.97 m | 44.34 m |
Exploration Time | 110.24 s | 155.20 s |
Simulation 1: Labyrinth | Simulation 2: Workspace with Obstacles | |
---|---|---|
Time Average | ||
Extract Data | 0.4880 s | 0.4976 s |
WoS Algorithm | 0.1373 s | 0.1967 s |
Agent’s Movement | 4.0861 s | 2.9283 s |
Dead-End | 0.1644 s | 0.2196 s |
Iteration Process (Without Movement) | 0.7897 s | 0.9139 s |
Iteration Process | 4.8758 s | 3.8421 s |
Total Results | ||
Iterations | 82 | 47 |
Trajectory Length | 13.72 m | 7.52 m |
Exploration Time | 399.80 s | 180.58 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsinis, D.; Karras, G.C.; Bechlioulis, C.P. Autonomous Exploration in Unknown Indoor 2D Environments Using Harmonic Fields and Monte Carlo Integration. Sensors 2025, 25, 4894. https://doi.org/10.3390/s25164894
Kotsinis D, Karras GC, Bechlioulis CP. Autonomous Exploration in Unknown Indoor 2D Environments Using Harmonic Fields and Monte Carlo Integration. Sensors. 2025; 25(16):4894. https://doi.org/10.3390/s25164894
Chicago/Turabian StyleKotsinis, Dimitrios, George C. Karras, and Charalampos P. Bechlioulis. 2025. "Autonomous Exploration in Unknown Indoor 2D Environments Using Harmonic Fields and Monte Carlo Integration" Sensors 25, no. 16: 4894. https://doi.org/10.3390/s25164894
APA StyleKotsinis, D., Karras, G. C., & Bechlioulis, C. P. (2025). Autonomous Exploration in Unknown Indoor 2D Environments Using Harmonic Fields and Monte Carlo Integration. Sensors, 25(16), 4894. https://doi.org/10.3390/s25164894