Accuracy Testing of Torque Limit Determination Algorithm Intended for Smart Bone Screwdrivers
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Materials and Data Collection
2.3. Data Processing
2.4. Data Analysis
2.5. Flexural Testing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kieser, D.C.; Ailabouni, R.; Kieser, S.C.; Wyatt, M.C.; Armour, P.C.; Coates, M.H.; Hooper, G.J. The Use of an Ossis Custom 3D-printed Tri-Flanged Acetabular Implant for Major Bone Loss: Minimum 2-Year Follow-Up. HIP Int. 2018, 28, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Han, X.; Wang, J.; Yuan, Z.; Wang, T.; Zhao, M.; Han, G. Cemented versus Uncemented Femoral Component Total Hip Arthroplasty in Elderly Patients with Primary Osteoporosis: Retrospective Analysis with 5-Year Follow-Up. J. Int. Med. Res. 2019, 47, 1610–1619. [Google Scholar] [CrossRef]
- Fernandez, D.L. Anterior Bone Grafting and Conventional Lag Screw Fixation to Treat Scaphoid Nonunions. J. Hand Surg. 1990, 15, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Scarlat, M.M.; Irrazi, M.; Beau, P.; Wenger, V.; Ionescu, N.; Berrichi, A. The Telegraph Nail for Proximal Humeral Fractures: A Prospective Four-Year Study. J. Shoulder Elb. Surg. 2008, 17, 539–545. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A.; Beavis, R.C.; Barrera Oro, F. Suture Anchor Materials, Eyelets, and Designs: Update 2008. Arthrosc. J. Arthrosc. Relat. Surg. 2008, 24, 859–867. [Google Scholar] [CrossRef]
- Feroz Dinah, A.; Mears, S.C.; Knight, T.A.; Soin, S.P.; Campbell, J.T.; Belkoff, S.M. Inadvertent Screw Stripping During Ankle Fracture Fixation in Elderly Bone. Geriatr. Orthop. Surg. Rehabil. 2011, 2, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Waletzko, J.; Dau, M.; Seyfarth, A.; Springer, A.; Frank, M.; Bader, R.; Jonitz-Heincke, A. Devitalizing Effect of High Hydrostatic Pressure on Human Cells—Influence on Cell Death in Osteoblasts and Chondrocytes. Int. J. Mol. Sci. 2020, 21, 3836. [Google Scholar] [CrossRef]
- Evans, M.; Spencer, M.; Wang, Q.; White, S.H.; Cunningham, J.L. Design and Testing of External Fixator Bone Screws. J. Biomed. Eng. 1990, 12, 457–462. [Google Scholar] [CrossRef]
- Hallab, N.J.; Jacobs, J.J. Biologic Effects of Implant Debris. Bull. NYU Hosp. Jt. Dis. 2009, 67, 182–188. [Google Scholar]
- Bel, J.C. Pitfalls and Limits of Locking Plates. Orthop. Traumatol. Surg. Res. 2019, 105, S103–S109. [Google Scholar] [CrossRef]
- Stoesz, M.J.; Gustafson, P.A.; Patel, B.V.; Jastifer, J.R.; Chess, J.L. Surgeon Perception of Cancellous Screw Fixation. J. Orthop. Trauma 2014, 28, e1. [Google Scholar] [CrossRef]
- Qi, W.; Xu, X.; Qian, K.; Schuller, B.W.; Fortino, G.; Aliverti, A. A Review of AIoT-Based Human Activity Recognition: From Application to Technique. IEEE J. Biomed. Health Inform. 2025, 29, 2425–2438. [Google Scholar] [CrossRef]
- Wilkie, J.; Docherty, P.D.; Möller, K. A Simple Screwing Process Model for Bone Material Identification. In Proceedings of the 14th Symposium on Automation in Medical Engineering, AUTOMED, Lübeck, Germany, 2–3 March 2020; Number 1. p. 38. [Google Scholar] [CrossRef]
- Wilkie, J.; Docherty, P.D.; Stieglitz, T.; Möller, K. Geometric Generalization of Self Tapping Screw Insertion Model. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Virtual, 30 October–5 November 2021; pp. 4387–4390. [Google Scholar] [CrossRef]
- Wilkie, J.; Rauter, G.; Möller, K. Interfacing with Prototype Instrumented Smart Screwdriver for Bone Screw Torque Regulation. IFAC-PapersOnLine 2024, 58, 287–290. [Google Scholar] [CrossRef]
- Wilkie, J.; Docherty, P.D.; Möller, K. Stripping Torque Model for Bone Screws. IFAC-PapersOnLine 2021, 54, 442–447. [Google Scholar] [CrossRef]
- Reynolds, K.J.; Mohtar, A.A.; Cleek, T.M.; Ryan, M.K.; Hearn, T.C. Automated Bone Screw Tightening to Adaptive Levels of Stripping Torque. J. Orthop. Trauma 2017, 31, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.L.; Bouazza-Marouf, K.; Taylor, G.J.S. Automated Surgical Screwdriver: Automated Screw Placement. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 817–827. [Google Scholar] [CrossRef]
- Wright, B.J.; Grigg, S.; Bergsaker, A.S.; Brattgjerd, J.E.; Steen, H.; Pullin, R. Real Time Monitoring of Screw Insertion Using Acoustic Emission Can Predict Screw Stripping in Human Cancellous Bone. Clin. Biomech. 2020, 76, 105026. [Google Scholar] [CrossRef]
- Wright, B.J.; Grigg, S.; McCrory, J.; Pullin, R.; Brattgjerd, J.E. A Novel Acoustic Emission Screwdriver Reduces Surgeons´ Cancellous Screw Stripping Rate—A Biomechanical Study. Clin. Biomech. 2025, 123, 106467. [Google Scholar] [CrossRef]
- Fletcher, J.W.A.; Neumann, V.; Silva, J.; Burdon, A.; Mys, K.; Panagiotopoulou, V.C.; Gueorguiev, B.; Richards, R.G.; Whitehouse, M.R.; Preatoni, E.; et al. Augmented Screwdrivers Can Increase the Performance of Orthopaedic Surgeons Compared with Use of Normal Screwdrivers. Sci. Rep. 2022, 12, 20076. [Google Scholar] [CrossRef]
- Wilkie, J.; Docherty, P.D.; Stieglitz, T.; Möller, K. Quantifying Accuracy of Self-Tapping Screw Models. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Virtual, 1–5 November 2021; pp. 4391–4394. [Google Scholar] [CrossRef]
- Calvert, K.L.; Trumble, K.P.; Webster, T.J.; Kirkpatrick, L.A. Characterization of Commercial Rigid Polyurethane Foams Used as Bone Analogs for Implant Testing. J. Mater. Sci. Mater. Med. 2010, 21, 1453–1461. [Google Scholar] [CrossRef]
- ISO 5835:1991; Implants for Surgery—Metal Bone Screws with Hexagonal Drive Connection, Spherical under-Surface of Head, Asymmetrical Thread—Dimensions. International Organization for Standardization: Geneva, Switzerland, 1991. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5835:ed-1:v1:en (accessed on 17 June 2025).
- Sika Deutschland GmbH. SikaBlock M80 Produktdatenblatt. 2020. Available online: https://industry.sika.com/content/dam/dms/deaddconst01/x/PDB-SikaBlock-M80-de.pdf (accessed on 1 April 2021).
- Sika Deutschland GmbH. SikaBlock M150 Product Data Sheet. 2020. Available online: https://industry.sika.com/content/dam/dms/global-industry/d/SikaBlock-M150.pdf (accessed on 1 April 2021).
- Sika Deutschland GmbH. SikaBlock M330 Product Data Sheet. 2020. Available online: https://industry.sika.com/content/dam/dms/global-industry/q/SikaBlock-M330.pdf (accessed on 1 April 2021).
- Sika Deutschland GmbH. SikaBlock M450 Produktdatenblatt. 2020. Available online: https://industry.sika.com/content/dam/dms/deaddconst01/d/PDB-SikaBlock-M450-de.pdf (accessed on 1 April 2021).
- Sika Deutschland GmbH. SikaBlock M600 Vorläufiges Produktdatenblatt. 2014. Available online: https://www.sks-gmbh.com/datenblaetter/send/189-sika/5914-sikablock-m600.html (accessed on 1 April 2021).
- SYNBONE AG. SYNBONE - Generic Blocks, Foams, Rods for Biomechanical Testing. 2019. Available online: https://www.synbone.com/products/biomechanics-generics/ (accessed on 6 December 2023).
- Cornu, O.; Banse, X.; Docquier, P.L.; Luyckx, S.; Delloye, C. Effect of Freeze-Drying and Gamma Irradiation on the Mechanical Properties of Human Cancellous Bone. J. Orthop. Res. 2000, 18, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, C.M.; Lautenschlager, E.P.; Meyer, P.R. Mechanical Properties of Human Cancellous Bone in the Femoral Head. Med. Biol. Eng. 1974, 12, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.C.; Chatterji, S.K.; Jeffery, J.W. Age-Related Changes in the Density and Tensile Strength of Human Femoral Cortical Bone. Calcif. Tissue Int. 1979, 27, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, J.; Jalal, N.A.; Rauter, G.; Möller, K. Segmenting/Pre-Processing Data from Bone Screw Thread-Stripping Tests. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wilkie, J.; Docherty, P.D.; Möller, K. Developments in Modelling Bone Screwing. Curr. Dir. Biomed. Eng. 2020, 6, 111–114. [Google Scholar] [CrossRef]
- Seneviratne, L.D.; Ngemoh, F.A.; Earles, S.W.E.; Althoefer, K.A. Theoretical Modelling of the Self-Tapping Screw Fastening Process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2001, 215, 135–154. [Google Scholar] [CrossRef]
- Liu, C.L.; Chen, H.H.; Cheng, C.K.; Kao, H.C.; Lo, W.H. Biomechanical Evaluation of a New Anterior Spinal Implant. Clin. Biomech. 1998, 13, S40–S45. [Google Scholar] [CrossRef]
- Amanov, A.; Cho, I.S.; Kim, D.E.; Pyun, Y.S. Fretting Wear and Friction Reduction of CP Titanium and Ti–6Al–4V Alloy by Ultrasonic Nanocrystalline Surface Modification. Surf. Coatings Technol. 2012, 207, 135–142. [Google Scholar] [CrossRef]
- Wilkie, J.; Docherty, P.D.; Rauter, G.; Möller, K. Brittleness Characterisation of Rigid Polyurethane Foam Artificial Bone for Biomechanical Testing. IFAC-PapersOnLine 2024, 58, 66–69. [Google Scholar] [CrossRef]
- Fletcher, J.W.A.; Zderic, I.; Gueorguiev, B.; Richards, R.G.; Gill, H.S.; Whitehouse, M.R.; Preatoni, E. Stripping Torques in Human Bone Can Be Reliably Predicted Prior to Screw Insertion with Optimum Tightness Being Found between 70% and 80% of the Maximum. Bone Jt. Res. 2020, 9, 493–500. [Google Scholar] [CrossRef]
- Wilkie, J.; Rauter, G.; Möller, K. Initial Engagement and Axial Force Model for Self-Tapping Bone Screws. Curr. Dir. Biomed. Eng. 2022, 8, 753–756. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Chen, J.; Zhu, R.; Munawar, A.; Xiao, B.; Guan, Y.; Su, H.; Hong, W.; Guo, Y.; et al. Human-Robot Shared Control for Surgical Robot Based on Context-Aware Sim-to-Real Adaptation. arXiv 2022. [Google Scholar] [CrossRef]
Material Name | () | (MPa) | E (MPa) |
---|---|---|---|
M80 [25] | 0.08 | 0.8 | 24 |
M150 [26] | 0.16 | 1.6 | 65 |
M330 [27] | 0.24 | 4 | 150 |
M450 [28] | 0.45 | 10 | 430 |
M600 [29] | 0.60 | 16–18 | 750 |
15 PCF [30] | 0.24 | 2–4 | - |
20 PCF [30] | 0.35 | 8–12 | - |
30 PCF [30] | 0.47 | 10–15 | - |
Cancellous Bone [31,32] (Femoral head) | 0.61–0.88 | 0.15–21 | 345–1475 |
Cortical Bone [32,33] (Femoral shaft) | 1.83–2.03 | 69 | 6900 |
Symbol | Value | Unit | Name |
---|---|---|---|
3.2 | mm | Hole diameter | |
6.5 | mm | Screw major diameter | |
2.8 | mm | Screw shank diameter | |
7.0 | mm | Head contact diameter | |
3.0 | mm | Screw minor diameter | |
15 | degrees | Screw thread half angle | |
p | 2.75 | mm | Screw thread pitch |
0.2 | Foam-screw friction co-eff. [37] | ||
0.45 | Plate-screw friction co-eff. [38] | ||
60 | degrees | Screw end taper |
Material | Ductility % |
---|---|
SikaBlock M330 | 26.7 |
SikaBlock M450 | 16.3 |
SikaBlock M600 | 19.2 |
SYNBONE 15 PCF | 20.7 |
SYNBONE 20 PCF | 14.4 |
SYNBONE 30 PCF | 27.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkie, J.A.; Battistel, A.; Docherty, P.D.; Friederich, N.F.; Rauter, G.; Möller, K. Accuracy Testing of Torque Limit Determination Algorithm Intended for Smart Bone Screwdrivers. Sensors 2025, 25, 3863. https://doi.org/10.3390/s25133863
Wilkie JA, Battistel A, Docherty PD, Friederich NF, Rauter G, Möller K. Accuracy Testing of Torque Limit Determination Algorithm Intended for Smart Bone Screwdrivers. Sensors. 2025; 25(13):3863. https://doi.org/10.3390/s25133863
Chicago/Turabian StyleWilkie, Jack A., Alberto Battistel, Paul D. Docherty, Niklaus F. Friederich, Georg Rauter, and Knut Möller. 2025. "Accuracy Testing of Torque Limit Determination Algorithm Intended for Smart Bone Screwdrivers" Sensors 25, no. 13: 3863. https://doi.org/10.3390/s25133863
APA StyleWilkie, J. A., Battistel, A., Docherty, P. D., Friederich, N. F., Rauter, G., & Möller, K. (2025). Accuracy Testing of Torque Limit Determination Algorithm Intended for Smart Bone Screwdrivers. Sensors, 25(13), 3863. https://doi.org/10.3390/s25133863