Evaluation of Color and Pigment Changes in Tomato after 1-Methylcyclopropene (1-MCP) Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Implementation of Treatment
2.3. Color Measurements
2.4. Chlorophyll-Content-Related Maturity Stage Measurements
2.5. Image Processing
2.6. Acoustic Firmness Measurements
- S—acoustic firmness coefficient (g2/3s−2 or Hz2g2/3);
- f—resonance frequency (Hz);
- m—weight of the tested crop (g).
2.7. Data Analysis
3. Results
3.1. Changes in Surface Color
3.2. Changes in DA-Index®
3.3. Changes in Texture
3.4. Digital Image Processing
3.5. Correlation Analysis between the Different Measurement Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pék, Z.; Helyes, L.; Lugasi, A. Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience 2010, 45, 466–468. [Google Scholar] [CrossRef]
- Hitka, G.; Zsom, T.; Nguyen, L.P.L.; Balla, C. Effect of 1-methylcyclopropene on ‘Bosc Kobak’ pears. Acta Aliment. Int. J. Food Sci. 2014, 43, 73–77. [Google Scholar] [CrossRef]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.L.P.; Pham, T.T.; Syium, Z.H.; Zsom-Muha, V.; Baranyai, L.; Zsom, T.; Hitka, G. Delay of 1-MCP treatment on post-harvest quality of ‘bosc kobak’ pear. Horticulturae 2022, 8, 89. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Serrano, M.; Valero, D. Efficacy of 1-MCP treatment in tomato fruit: 1. Duration and concentration of 1-MCP treatment to gain an effective delay of postharvest ripening. Postharvest Biol. Technol. 2007, 43, 23–27. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Valero, D.; Serrano, M. Efficacy of 1-MCP treatment in tomato fruit: 2. Effect of cultivar and ripening stage at harvest. Postharvest Biol. Technol. 2006, 42, 235–242. [Google Scholar] [CrossRef]
- Mata, C.I.; Magpantay, J.; Hertog, M.L.; Van de Poel, B.; Nicolaï, B.M. Expression and protein levels of ethylene receptors, CTRs and EIN2 during tomato fruit ripening as affected by 1-MCP. Postharvest Biol. Technol. 2021, 179, 111573. [Google Scholar] [CrossRef]
- Liu, G.; Mao, S.; Kim, J.H. A mature-tomato detection algorithm using machine learning and color analysis. Sensors 2019, 19, 2023. [Google Scholar] [CrossRef]
- Tadesse, T.N.; Ibrahim, A.M.; Abtew, W.G. Degradation and formation of fruit color in tomato (Solanum lycopersicum L.) in response to storage temperature. Am. J. Food Technol. 2015, 10, 147–157. [Google Scholar] [CrossRef]
- USDA 51.1860 Tomato Color Standard. Available online: https://www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf (accessed on 21 February 2024).
- Saad, A.M.; Ibrahim, A.; El-Bialee, N. Internal quality assessment of tomato fruits using image color analysis. Agric. Eng. Int. CIGR J. 2016, 18, 339–352. [Google Scholar]
- Vela-Hinojosa, C.; Escalona-Buendía, H.B.; Mendoza-Espinoza, J.A.; Villa-Hernández, J.M.; Lobato-Ortíz, R.; Rodríguez-Pérez, J.E.; Pérez-Flores, L.J. Antioxidant balance and regulation in tomato genotypes of different color. J. Am. Soc. Hortic. Sci. 2019, 144, 45–54. [Google Scholar] [CrossRef]
- Darrigues, A.; Hall, J.; van der Knaap, E.; Francis, D.M.; Dujmovic, N.; Gray, S. Tomato analyzer-color test: A new tool for efficient digital phenotyping. J. Am. Soc. Hortic. Sci. 2008, 133, 579–586. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Lagopodi, A.L.; Tamouridou, A.A.; Kamou, N.N.; Giannakis, I.; Lagiotis, G.; Stavridou, E.; Madesis, P.; Tziotzios, G.; Dolaptsis, K.; et al. Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics. Sensors 2022, 22, 5970. [Google Scholar] [CrossRef] [PubMed]
- Zsom, T.; Zsom-Muha, V.; Nguyen, L.L.P.; Nagy, D.; Hitka, G.; Polgári, P.; Baranyai, L. Nondestructive detection of low temperature induced stress on postharvest quality of kápia type sweet pepper. Prog. Agric. Eng. Sci. 2020, 16, 173–186. [Google Scholar] [CrossRef]
- Herppich, W.B.; Zsom, T. Comprehensive assessment of the dynamics of banana chilling injury by advanced optical techniques. Appl. Sci. 2021, 11, 11433. [Google Scholar] [CrossRef]
- Kasampalis, D.S.; Tsouvaltzis, P.; Siomos, A.S. Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharvest Biol. Technol. 2020, 161, 111036. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Chen, K. Assessment of tomato soluble solids content and pH by spatially-resolved and conventional Vis/NIR spectroscopy. J. Food Eng. 2018, 236, 19–28. [Google Scholar] [CrossRef]
- Kurenda, A.; Zdunek, A.; Schlüter, O.; Herppich, W.B. VIS/NIR spectroscopy, chlorophyll fluorescence, biospeckle and backscattering to evaluate changes in apples subjected to hydrostatic pressures. Postharvest Biol. Technol. 2014, 96, 88–98. [Google Scholar] [CrossRef]
- Li, B.; Lecourt, J.; Bishop, G. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction—A Review. Plants 2018, 7, 3. [Google Scholar] [CrossRef]
- Istella, S. Korszerű Eljárások a Zöldségfélék Tárolhatóságának Előrejelzésére (Modern Methods for Prediction of Vegetable Storability). Ph.D. Dissertation, Corvinus University of Budapest, Budapest, Hungary, 2008. [Google Scholar]
- Zsom-Muha, V. Dinamikus Módszerek Kertészeti Termények Jellemzésére (Dynamic Methods for Characterization of Horticultural Products). Ph.D. Dissertation, Corvinus University of Budapest, Budapest, Hungary, 2008. [Google Scholar]
- Enza Zaden Export B.V. Vegetable Seed Catalogue. Available online: https://webkiosk.enzazaden.com/vegetable-seed-catalogue/56495022/34 (accessed on 8 March 2024).
- CTIFL Tomato Colour Scale. Available online: https://www.ctifl.fr/code-couleur-tomate-a-plat-affichette (accessed on 21 February 2024).
- Kumari, P.; Ahmad, M.F.; Mir, H. Non-destructive quality evaluation by sensing maturity and ripening of fruits and vegetables. J. Postharvest Technol. 2018, 6, 84–89. [Google Scholar]
- Nguyen, L.L.P.; Baranyai, L.; Nagy, D.; Mahajan, P.V.; Zsom-Muha, V.; Zsom, T. Color analysis of horticultural produces using hue spectra fingerprinting. MethodsX 2021, 8, 101594. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.L.P.; Visy, A.; Baranyai, L.; Friedrich, L.; Mahajan, P.V. Application of hue spectra fingerprinting during cold storage and shelf life of packaged sweet cherry. J. Food Meas. Charact. 2020, 14, 2689–2702. [Google Scholar] [CrossRef]
- Kaffka, K.J.; Gyarmati, L.S. Investigating the polar qualification system. J. Near Infrared Spectrosc. 1998, 6, A191–A200. [Google Scholar] [CrossRef]
- De Ketelaere, B.; Howarth, M.S.; Crezee, L.; Lammertyn, J.; Viaene, K.; Bulens, I.; De Baerdemaeker, J. Postharvest firmness changes as measured by acoustic and low-mass impact devices: A comparison of techniques. Postharvest Biol. Technol. 2006, 41, 275–284. [Google Scholar] [CrossRef]
- Horváth-Mezőfi, Z.; Szabó, G.; Göb, M.; Bátor, E.; Hitka, G.; Zsom, T. Effect of 1-MCP treatment on tomato postharvest physiological behavior. In Proceedings of the 4th FoodConf—International Conference on Food Science and Technology, Budapest, Hungary, 10–11 June 2022. [Google Scholar]
- López Camelo, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Braileira 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Helyes, L.; Dimény, J.; Pék, Z.; Lugasi, A. Effect of maturity stage on content, color and quality of tomato (Lycopersicon lycopersicum (L.) Karsten) fruit. Int. J. Hortic. Sci. 2006, 12, 41–44. [Google Scholar] [CrossRef]
- Schouten, R.E.; Huijben, T.P.; Tijskens LM, M.; Van Kooten, O. Modelling quality attributes of truss tomatoes: Linking colour and firmness maturity. Postharvest Biol. Technol. 2007, 45, 298–306. [Google Scholar] [CrossRef]
- Lelièvre, J.M.; Latché, A.; Jones, B.; Bouzayen, M.; Pech, J.C. Ethylene and fruit ripening. Physiol. Plant. 1997, 101, 727–739. [Google Scholar] [CrossRef]
- Génard, M.; Gouble, B. ETHY. A theory of fruit climacteric ethylene emission. Plant Physiol. 2005, 139, 531–545. [Google Scholar] [CrossRef]
- Dong, L.; Lurie, S.; Zhou, H.W. Effect of 1-methylcyclopropene on ripening of ‘Canino’ apricots and ‘Royal Zee’ plums. Postharvest Biol. Technol. 2002, 24, 135–145. [Google Scholar] [CrossRef]
- Hobson, G.E.; Adams, P.; Dixon, T.J. Assessing the colour of tomato fruit during ripening. J. Sci. Food Agric. 1983, 34, 286–292. [Google Scholar] [CrossRef]
- Wainwright, H.; Hughes, P. Changes in banana pulp colour during ripening. Fruits 1990, 45, 25–28. [Google Scholar]
- Manera, F.J.; Legua, P.; Melgarejo, P.; Brotons, J.M.; Hernández FC, A.; Martínez, J.J. Determination of a colour index for fruit of pomegranate varietal group “Mollar de Elche”. Sci. Hortic. 2013, 150, 360–364. [Google Scholar] [CrossRef]
- Iglesias, I.; Echeverría, G.; Soria, Y. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’apple strains. Sci. Hortic. 2008, 119, 32–40. [Google Scholar] [CrossRef]
- Cox, K.A.; McGhie, T.K.; White, A.; Woolf, A.B. Skin colour and pigment changes during ripening of ‘Hass’ avocado fruit. Postharvest Biol. Technol. 2004, 31, 287–294. [Google Scholar] [CrossRef]
- Kozukue, N.; Friedman, M. Tomatine, chlorophyll, β-carotene and lycopene content in tomatoes during growth and maturation. J. Sci. Food Agric. 2003, 83, 195–200. [Google Scholar] [CrossRef]
- Guyer, L.; Hofstetter, S.S.; Christ, B.; Lira, B.S.; Rossi, M.; Hörtensteiner, S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol. 2014, 166, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Gormley, R.; Egan, S. Firmness and colour of the fruit of some tomato cultivars from various sources during storage. J. Sci. Food Agric. 1978, 29, 534–538. [Google Scholar] [CrossRef]
- Raffo, A.; Baiamonte, I.; Nardo, N.; Nicoli, S.; Moneta, E.; Peparaio, M.; Sinesio, F.; Paoletti, F. Impact of early harvesting and two cold storage technologies on eating quality of red ripe tomatoes. Eur. Food Res. Technol. 2018, 244, 805–818. [Google Scholar] [CrossRef]
- Rahman, M.A.; Islam, M.N.; Nasrin, T.A.A.; Begum, M.M. Non-destructive quality assessment of tomato fruit using differential absorbance technique. Int. J. Agric. Res. Innov. Technol. (IJARIT) 2019, 9, 42–50. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages |
---|---|---|
Colorimeter | Fast measurement. Very accurate and easy-to-access data on color. | Moderately expensive instrument. Local (point-like) data acquisition limited to the device’s optical features. In-line use is not possible. |
Acoustic firmness tester | It characterizes the texture of the whole product. Fast measurement. | Only softening in the texture that can be related to ripening is measured indirectly. Other factors causing changes in texture may interfere with the accuracy of the measurement. It requires a quiet environment free of all vibrations and is not suitable for in-line measurements. |
Impact firmness tester | Fast measurement; does not require expensive equipment. In-line use available. | Local (point-like) data acquisition; this may lead to differences. |
Chlorophyll fluorescence measurement | The whole product can be characterized depending on the equipment’s set-up (global data acquisition and data analysis). Relatively accurate measurement related to the chlorophyll-containing green pigment content of tomatoes. | Expensive chlorophyll fluorescence imaging instruments. Some handheld or laboratory table-top devices acquire data only in point-like regions. Depending on the equipment, long measurement and complex data evaluation. The proper illumination of the product is a very important aspect, which raises questions about in-line use. |
Magnetic resonance imaging (MRI) | MRI is able to distinguish physiological changes between different tissue types and physiological changes during tomato fruit ripening. It characterizes the whole product, not only point-like regions. | High investment price and running cost. Difficult data evaluation. |
DA-meter® (Vis-NIR meter) | Fast. Relatively cheap equipment. Easy to evaluate. It can also be used in the field/orchard/garden. NIR spectroscopy is already used in-line, so it is probably feasible for this method. | Local (point-like) data acquisition limited to the device’s optical features. |
Image processing | Fast. A simple, low-cost camera is enough. The color of the whole product can be characterized; in addition, several samples can be analyzed at the same time. In-line use is possible and also can be used in the field/orchard/garden. | Skilled personnel and special data analyses are required. |
Maturity Status | Typical Color | Group | |
---|---|---|---|
1 | Mature green | Dark green | A |
2 | Breaker | Whiteish green; less than 10% of the tomato is pink | B |
4 | Turning | 10–30% of the tomato surface is pink | C |
6 | Pink | 30–60% of the tomato surface is pink | D |
8 | Light red | 60–90% of the tomato surface is pink | E |
12 | Red | 100% of the tomato surface is red; full ripeness | F |
Treatment | ||
---|---|---|
Maturity Status | Control | SF (SmartFreshTM) |
A (mature green) | 21.09 ± 3.48 Ba | −11.43 ± 2.95 Aa |
B (breaker) | 20.73 ± 2.85 Ba | −11.07 ± 2.19 Aa |
C (turning) | 23.64 ± 1.8 Bb | 12.63 ± 4.76 Ab |
D(pink) | 24.83 ± 1.79 Bc | 18.73 ± 2.32 Ac |
E (light red) | 25.46 ± 1.16 Bc | 20.89 ± 3.23 Ad |
Treatment | ||
---|---|---|
Maturity Status | Control | SF (SmartFreshTM) |
A (mature green) | 0.055 ± 0.065 Ba | 1.05 ± 0.29 Ac |
B (breaker) | 0.094 ± 0.169 Ba | 0.939 ± 0.246 Ac |
C (turning) | 0.01 ± 0.019 Bb | 0.047 ± 0.07 Ab |
D (pink) | 0.006 ± 0.011 Ab | 0.005 ± 0.011 Aa |
E (light red) | 0.007 ± 0.011 Ab | 0.007 ± 0.017 Aa |
Treatment | ||
---|---|---|
Maturity Status | Control | SF (SmartFreshTM) |
A (mature green) | 2.37 ± 0.64 Ba | 4.2 ± 0.87 Ab |
B (breaker) | 2.29 ± 0.62 Ba | 3.95 ± 0.83 Ab |
C (turning) | 2.23 ± 0.63 Ba | 3.07 ± 0.95 Aa |
D (pink) | 2.1 ± 0.56 Ba | 2.94 ± 1.1 Aa |
E (light red) | 2.04 ± 0.59 Ba | 3.13 ± 0.75 Aa |
Parameter | Primary Effects | Interaction Effects | ||||
---|---|---|---|---|---|---|
Group (G) | 1-MCP (P) | Time (T) | G × P | G × T | P × T | |
Red | 3.64 ** | 0.52 | 6.39 * | 1.59 | 0.44 | 0.03 |
Green | 20.69 ** | 25.34 ** | 14.07 ** | 1.53 | 0.13 | 11.11 ** |
Blue | 4.22 ** | 2.45 | 2.07 | 0.82 | 0.08 | 1.28 |
Red norm. | 78.26 ** | 50.22 ** | 126.78 ** | 4.87 ** | 0.87 | 34.54 ** |
Green norm. | 159.66 ** | 149.83 ** | 212.68 ** | 6.97 ** | 1.43 | 78.54 ** |
Blue norm. | 6.28 ** | 0.18 | 22.17 ** | 1.42 | 0.40 | 1.18 |
PQS X | 1.86 | 10.18 ** | 2.49 | 0.80 | 0.33 | 0.11 |
PQS Y | 11.15 ** | 7.11 * | 18.18 ** | 1.06 | 0.08 | 8.70 ** |
Green | Blue | R Norm | G Norm | B Norm | PQS X | PQS Y | |
---|---|---|---|---|---|---|---|
Red | 0.124 | 0.449 ** | 0.336 ** | −0.347 ** | 0.209 | 0.147 | 0.238 * |
Green | 0.883 ** | −0.874 ** | 0.866 ** | 0.681 ** | −0.275 * | −0.643 ** | |
Blue | −0.615 ** | 0.560 ** | 0.662 ** | −0.118 | −0.394 ** | ||
Red norm. | −0.986 ** | 0.792 ** | 0.344 ** | 0.724 ** | |||
Green norm. | 0.681 ** | −0.355 ** | −0.746 ** | ||||
Blue norm. | −0.219 | −0.458 ** | |||||
PQS X | 0.192 |
DA-Index® | a* | Red Norm. | Green Norm. | PQS-X | PQS-Y | |
---|---|---|---|---|---|---|
S | 0.762 | −0.782 | −0.783 | 0.787 | −0.555 | −0.805 |
DA-index® | −0.967 | −0.911 | 0.929 | −0.640 | −0.904 | |
a* | 0.935 | −0.962 | 0.692 | 0.958 | ||
Red norm. | −0.969 | 0.644 | 0.911 | |||
Green norm. | −0.693 | −0.948 | ||||
PQS-X | 0.706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváth-Mezőfi, Z.; Baranyai, L.; Nguyen, L.L.P.; Dam, M.S.; Ha, N.T.T.; Göb, M.; Sasvár, Z.; Csurka, T.; Zsom, T.; Hitka, G. Evaluation of Color and Pigment Changes in Tomato after 1-Methylcyclopropene (1-MCP) Treatment. Sensors 2024, 24, 2426. https://doi.org/10.3390/s24082426
Horváth-Mezőfi Z, Baranyai L, Nguyen LLP, Dam MS, Ha NTT, Göb M, Sasvár Z, Csurka T, Zsom T, Hitka G. Evaluation of Color and Pigment Changes in Tomato after 1-Methylcyclopropene (1-MCP) Treatment. Sensors. 2024; 24(8):2426. https://doi.org/10.3390/s24082426
Chicago/Turabian StyleHorváth-Mezőfi, Zsuzsanna, László Baranyai, Lien Le Phuong Nguyen, Mai Sao Dam, Nga Thi Thanh Ha, Mónika Göb, Zoltán Sasvár, Tamás Csurka, Tamás Zsom, and Géza Hitka. 2024. "Evaluation of Color and Pigment Changes in Tomato after 1-Methylcyclopropene (1-MCP) Treatment" Sensors 24, no. 8: 2426. https://doi.org/10.3390/s24082426
APA StyleHorváth-Mezőfi, Z., Baranyai, L., Nguyen, L. L. P., Dam, M. S., Ha, N. T. T., Göb, M., Sasvár, Z., Csurka, T., Zsom, T., & Hitka, G. (2024). Evaluation of Color and Pigment Changes in Tomato after 1-Methylcyclopropene (1-MCP) Treatment. Sensors, 24(8), 2426. https://doi.org/10.3390/s24082426