Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Procedure
2.3. Fatigue Protocol
2.4. Data Collection
2.5. Data Processing
2.6. Workflow of OpenSim
- Skeletal model: Typically based on medical imaging (e.g., CT, MRI) or standardized human skeletal models.
- 2.
- Inverse kinematics (IK)
- 3.
- Inverse dynamics (ID)
- 4.
- Residual reduction algorithm (RRA)
- 5.
- Static optimization (SO)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gouttebarge, V.; van Sluis, M.; Verhagen, E.; Zwerver, J. The prevention of musculoskeletal injuries in volleyball: The systematic development of an intervention and its feasibility. Inj. Epidemiol. 2017, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, D.R.; Bevilacqua, G.G.; Pereira, F.S.; Andrade, A. Effect of Mindfulness Training on Fatigue and Recovery in Elite Volleyball Athletes: A Randomized Controlled Follow-Up Study. J. Sports Sci. Med. 2021, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kilic, O.; Maas, M.; Verhagen, E.; Zwerver, J.; Gouttebarge, V. Incidence, aetiology and prevention of musculoskeletal injuries in volleyball: A systematic review of the literature. Eur. J. Sport Sci. 2017, 17, 765–793. [Google Scholar] [CrossRef] [PubMed]
- Bere, T.; Kruczynski, J.; Veintimilla, N.; Hamu, Y.; Bahr, R. Injury risk is low among world-class volleyball players: 4-year data from the FIVB Injury Surveillance System. Br. J. Sports Med. 2015, 49, 1132–1137. [Google Scholar] [CrossRef]
- Verhagen, E.A.; Van der Beek, A.J.; Bouter, L.M.; Bahr, R.M.; Van Mechelen, W. A one season prospective cohort study of volleyball injuries. Br. J. Sports Med. 2004, 38, 477–481. [Google Scholar] [CrossRef]
- Baugh, C.M.; Weintraub, G.S.; Gregory, A.J.; Djoko, A.; Dompier, T.P.; Kerr, Z.Y. Descriptive Epidemiology of Injuries Sustained in National Collegiate Athletic Association Men’s and Women’s Volleyball, 2013–2014 to 2014–2015. Sports Health A Multidiscip. Approach 2018, 10, 60–69. [Google Scholar] [CrossRef]
- Marquez, W.Q.; Masumura, M.; Ae, M. Spike-landing Motion of Elite Male Volleyball Players during Official Games. Int. J. Sport Health Sci. 2011, 9, 82–90. [Google Scholar] [CrossRef]
- Coventry, E.; O’Connor, K.M.; Hart, B.A.; Earl, J.E.; Ebersole, K.T. The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin. Biomech. 2006, 21, 1090–1097. [Google Scholar] [CrossRef]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef]
- Dickin, D.C.; Johann, E.; Wang, H.; Popp, J.K. Combined Effects of Drop Height and Fatigue on Landing Mechanics in Active Females. J. Appl. Biomech. 2015, 31, 237–243. [Google Scholar] [CrossRef]
- Iguchi, J.; Tateuchi, H.; Taniguchi, M.; Ichihashi, N. The effect of sex and fatigue on lower limb kinematics, kinetics, and muscle activity during unanticipated side-step cutting. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Zhang, X.; Wang, X.; Sun, X.; Fu, W. Effects of Two Fatigue Protocols on Impact Forces and Lower Extremity Kinematics during Drop Landings: Implications for Noncontact Anterior Cruciate Ligament Injury. J. Healthc. Eng. 2017, 2017, 5690519. [Google Scholar] [CrossRef] [PubMed]
- Gear, W.S. Effect of different levels of localized muscle fatigue on knee position sense. J. Sports Sci. Med. 2011, 10, 725–730. [Google Scholar] [PubMed]
- Wnorowski, K.; Aschenbrenner, P.; Skrobecki, J.; Stech, M. An assessment of a volleyball player’s loads in a match on the basis of the number and height of jumps measured in real-time conditions. Balt. J. Health Phys. Act. 2013, 5, 5. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Chia, C.C.; Lee, P.Y.; Lin, L.C.; Kuo, Y.L. Landing Kinematics, Sports Performance, and Isokinetic Strength in Adolescent Male Volleyball Athletes: Influence of Core Training. J. Sport Rehabil. 2020, 29, 65–72. [Google Scholar] [CrossRef]
- Vanderlei, F.M.; Bastos, F.N.; Tsutsumi, G.Y.C.; Vanderlei, L.C.M.; Júnior, J.N.; Pastre, C.M. Characteristics and contributing factors related to sports injuries in young volleyball players. BMC Res. Notes 2013, 6, 415. [Google Scholar] [CrossRef]
- García-Luna, M.A.; Cortell-Tormo, J.M.; García-Jaén, M.; Ortega-Navarro, M.; Tortosa-Martínez, J. Acute Effects of ACL Injury-Prevention Warm-Up and Soccer-Specific Fatigue Protocol on Dynamic Knee Valgus in Youth Male Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 5608. [Google Scholar] [CrossRef]
- Azuma, N.; Sugano, T.; Shimizu, I.; Kosaka, M. Injuries associated with Japanese high-school men’s volleyball: A two-year survey and analysis. J. Phys. Ther. Sci. 2019, 31, 656–660. [Google Scholar] [CrossRef]
- Lin, H.-T.; Kuo, W.-C.; Chen, Y.; Lo, T.-Y.; Li, Y.-I.; Chang, J.-H. Effects of Fatigue in Lower Back Muscles on Basketball Jump Shots and Landings. Phys. Act. Health 2022, 6, 273. [Google Scholar] [CrossRef]
- Tait, D.B.; Newman, P.; Ball, N.B.; Spratford, W. What did the ankle say to the knee? Estimating knee dynamics during landing—A systematic review and meta-analysis. J. Sci. Med. Sport 2022, 25, 183–191. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Ambegaonkar, J.P.; Kollock, R.O.; Caswell, S.V.; Onate, J.A. Knee kinematics is altered post-fatigue while performing a crossover task. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2014, 22, 2202–2208. [Google Scholar] [CrossRef] [PubMed]
- Jayalath, J.L.R.; de Noronha, M.; Weerakkody, N.; Bini, R. Effects of fatigue on ankle biomechanics during jumps: A systematic review. J. Electromyogr. Kinesiol. 2018, 42, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Kremenic, I.J. Effect of Fatigue on Single-Leg Hop Landing Biomechanics. J. Appl. Biomech. 2006, 22, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ruan, M.; Singh, N.B.; Huang, L.; Zhang, X.; Wu, X. Progression of Fatigue Modifies Primary Contributors to Ground Reaction Forces During Drop Landing. J. Hum. Kinet. 2021, 76, 161–173. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, R.; Dai, B.; Sun, X.; Fu, W. Effects of Exercise-Induced Fatigue on Lower Extremity Joint Mechanics, Stiffness, and Energy Absorption during Landings. J. Sports Sci. Med. 2018, 17, 640–649. [Google Scholar]
- Kim, H.; Palmieri-Smith, R.; Kipp, K. Muscle force contributions to ankle joint contact forces during an unanticipated cutting task in people with chronic ankle instability. J. Biomech. 2021, 124, 110566. [Google Scholar] [CrossRef]
- Kellis, E.; Kouvelioti, V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J. Electromyogr. Kinesiol. 2009, 19, 55–64. [Google Scholar] [CrossRef]
- Enoka, R.M. Muscle fatigue—From motor units to clinical symptoms. J. Biomech. 2012, 45, 427–433. [Google Scholar] [CrossRef]
- Jordan, S.S.; DeFrate, L.E.; Nha, K.W.; Papannagari, R.; Gill, T.J.; Li, G. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am. J. Sports Med. 2007, 35, 547–554. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Malloy, P.; Morgan, A.; Meinerz, C.; Geiser, C.; Kipp, K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Pope, R.; Herbert, R.; Kirwan, J. Effects of ankle dorsiflexion range and pre-exercise calf muscle stretching on injury risk in Army recruits. Aust. J. Physiother. 1998, 44, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Malliaras, P.; Cook, J.L.; Kent, P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J. Sci. Med. Sport 2006, 9, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Witvrouw, E.; Lysens, R.; Bellemans, J.; Cambier, D.; Vanderstraeten, G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am. J. Sports Med. 2000, 28, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Drewes, L.K.; Mckeon, P.O.; Kerrigan, D.C.; Hertel, J. Dorsiflexion deficit during jogging with chronic ankle instability. J. Sci. Med. Sport 2010, 12, 685–687. [Google Scholar] [CrossRef]
- Shimokochi, Y.; Shultz, S.J. The Relationship between Ankle Dorsiflexion ROM and Ground Reaction Force during a Single Leg Landing: 859: June 1 2:15 PM–2:30 PM. Med. Sci. Sports Exerc. 2007, 39, S79. [Google Scholar] [CrossRef]
- Hahn, D.; Olvermann, M.; Richtberg, J.; Seiberl, W.; Schwirtz, A. Knee and ankle joint torque-angle relationships of multi-joint leg extension. J. Biomech. 2011, 44, 2059–2065. [Google Scholar] [CrossRef]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Chu, V.W.; Yung, P.S.; Fong, D.T.P. Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task. J. Appl. Biomech. 2023, 39, 110–117. [Google Scholar] [CrossRef]
- Ebert, J.R.; Edwards, P.K.; Fick, D.P.; Janes, G.C. A Systematic Review of Rehabilitation Exercises to Progressively Load the Gluteus Medius. J. Sport Rehabil. 2017, 26, 418–436. [Google Scholar] [CrossRef]
- Gowda, A.L.; Mease, S.J.; Donatelli, R.; Zelicof, S. Gluteus medius strengthening and the use of the Donatelli Drop Leg Test in the athlete. Phys. Ther. Sport 2014, 15, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, L.; Pritchard, S.E.; Warmenhoven, J.; Bruce, T.; MacDonald, K.; Klimstra, M.; McNeil, C.J. Volleyball Competition on Consecutive Days Modifies Jump Kinetics but Not Height. Int. J. Sports Physiol. Perform. 2022, 17, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.; Santos, F.; Gonçalves, P.; Oliveira, J. Effects of volleyball match-induced fatigue on knee joint position sense. Eur. J. Sport Sci. 2008, 8, 397–402. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Kollock, R.; Ambegaonkar, J.; Onate, J.A. Changes in Lower Extremity Biomechanics Due to a Short-Term Fatigue Protocol. J. Athl. Train. 2013, 48, 306–313. [Google Scholar] [CrossRef]
- Quammen, D.; Cortes, N.; Van Lunen, B.L.; Lucci, S.; Ringleb, S.I.; Onate, J. Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J. Athl. Train. 2012, 47, 32–41. [Google Scholar] [CrossRef]
- McLean, S.G.; Samorezov, J.E. Fatigue-induced ACL injury risk stems from a degradation in central control. Med. Sci. Sports Exerc. 2009, 41, 1661–1672. [Google Scholar] [CrossRef]
Criterion | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Age | 13–18 years old | Younger than 13 or older than 18 |
Sex | Male | Female |
Sport Experience | At least 2 years of volleyball training experience, currently on a school or club team | Lack of volleyball training experience or insufficient training volume |
Health Status | No significant medical history, no lower extremity injuries, no recent surgeries | History of heart disease, hypertension, diabetes, or other chronic diseases; history of lower extremity injuries; recent surgeries |
Training Volume | At least 3 training sessions per week, each session lasting at least 1 h | Insufficient training volume |
Skill Level | Possesses good basic volleyball skills, especially landing technique | Poor technical skills |
Strength Level | Passes strength tests to ensure adequate lower extremity muscle strength | Insufficient lower extremity muscle strength |
Flexibility | Passes flexibility tests to ensure adequate range of motion in lower extremity joints | Insufficient flexibility |
Dominant Hand and Foot | Dominant hand and foot are on the right side | Dominant hand and foot are on the left side |
Other | Willingness to participate in the study and signed informed consent | Does not meet the specific requirements of the study |
Participant’s Number | Age (years) | Height (cm) | Weight (kg) | Head Circumference (cm) | Chest Circumference (cm) | Arm Length (cm) | Palm Width (cm) | Waist Circumference (cm) | Thigh Length (cm) | Knee Width (cm) | Calf Length (cm) | Foot Length (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15 | 181.2 | 65.9 | 56.4 | 91.8 | 58.4 | 8 | 72.4 | 44.2 | 10.1 | 37.7 | 24.7 |
2 | 16 | 179.0 | 81.4 | 59.3 | 88.7 | 58.6 | 8.1 | 66.4 | 52.5 | 10.3 | 32.9 | 25.9 |
3 | 16 | 187.5 | 79.7 | 56.4 | 88.5 | 54.2 | 8.3 | 67.7 | 55.2 | 10.2 | 36.8 | 25.1 |
4 | 15 | 183.8 | 65.2 | 56.3 | 87.9 | 57.7 | 8.8 | 72.2 | 51.5 | 10.6 | 39.7 | 23.4 |
5 | 15 | 189.2 | 71.9 | 60.7 | 95.4 | 61.4 | 8.1 | 72.3 | 54 | 10.7 | 38.4 | 23 |
6 | 15 | 182.1 | 67.4 | 56.8 | 98.1 | 62.8 | 8.7 | 70.6 | 48 | 11.1 | 36.5 | 23.7 |
7 | 15 | 190.3 | 75.8 | 55 | 89.8 | 59.4 | 8.1 | 63.4 | 50.6 | 9.8 | 36.4 | 25.1 |
8 | 16 | 186,7 | 69.6 | 57 | 92.3 | 58.9 | 8.8 | 72.2 | 48 | 11.3 | 38.1 | 23.2 |
9 | 16 | 185.5 | 76.4 | 56.5 | 91.4 | 61.9 | 8.3 | 71 | 46.6 | 9.2 | 37.8 | 25.8 |
10 | 14 | 188.0 | 68.7 | 58.4 | 88 | 66.2 | 8.3 | 69 | 49 | 11.1 | 39.1 | 22.2 |
Non-Fatigue | Post-Fatigue | |||||
---|---|---|---|---|---|---|
Hip | Knee | Ankle | Hip | Knee | Ankle | |
Joint angle at IC (°) | 11.0 (7.9) | −17.7 (11.7) | 6.3 (15.6) | 11.9 (9.7) | −16.1 (10.2) | 3.31 (4.7) * |
Peak joint angle (°) | 31.2 (19.9) | −47.6 (8.1) | 34.8 (4.4) | 32.8 (23.4) | −49.1 (11.9) | 35.5 (5.4) |
Range of motion (°) | 20.5 (13.6) | 29.8 (10.0) | 28.6 (16.2) | 21.9 (11.6) | 35.2 (10.9) * | 32.9 (15.7) |
Non-Fatigue | Post-Fatigue | |||||
---|---|---|---|---|---|---|
Hip | Knee | Ankle | Hip | Knee | Ankle | |
Joint moment at IC (Nm/kg) | −1.7 (2.3) | −1.3 (1.8) | −0.4 (0.8) | −1.6 (2.0) | −1.5 (1.6) | −0.4 (0.9) |
Peak joint moment (Nm/kg) | −4.7 (2.2) | 2.8 (0.9) | −3.2 (0.3) | −5.3 (2.8) | 2.3 (0.5) | −3.4 (0.8) |
Non-Fatigue | Post-Fatigue | |
---|---|---|
Muscle force at IC (BW) | ||
GMX | 0.05 (0.03) | 0.07 (0.11) |
GMD | 0.15 (0.15) | 0.15 (0.19) |
VI | 0.09 (0.01) | 0.20 (0.31) |
RF | 0.02 (0.01) | 0.03 (0.04) |
BF | 0.18 (0.17) | 0.23 (0.27) |
GS | 0.11 (0.04) | 0.18 (0.19) |
TP | 0.07 (0.01) | 0.17 (0.29) |
TA | 0.02 (0.01) | 0.05 (0.07) |
Peak muscle force (BW) | ||
GMX | 1.62 (0.49) | 2.39 (0.32) * |
GMD | 0.51 (0.17) | 0.79 (0.36) * |
VI | 5.49 (3.76) | 3.85 (3.75) |
RF | 0.27 (0.12) | 0.39 (0.11) |
BF | 1.01 (0.58) | 1.33 (0.72) |
GS | 0.57 (0.10) | 0.94 (0.44) * |
TP | 0.13 (0.11) | 0.61 (0.49) * |
TA | 0.03 (0.01) | 0.41 (0.36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Kapilevich, L.V.; Chen, J. Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players. Sensors 2024, 24, 6811. https://doi.org/10.3390/s24216811
Li T, Kapilevich LV, Chen J. Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players. Sensors. 2024; 24(21):6811. https://doi.org/10.3390/s24216811
Chicago/Turabian StyleLi, Taisen, Leonid Vladimirovich Kapilevich, and Junru Chen. 2024. "Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players" Sensors 24, no. 21: 6811. https://doi.org/10.3390/s24216811
APA StyleLi, T., Kapilevich, L. V., & Chen, J. (2024). Effects of Mild Fatigue on Biomechanics of Single Leg Landing in Young Male Volleyball Players. Sensors, 24(21), 6811. https://doi.org/10.3390/s24216811