Efficient Fourth-Order PSTD Algorithm with Moving Window for Long-Distance EMP Propagation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maxwell Equations with Fourth-Order Accurate Time-Difference
2.2. Moving Window PSTD-4 (MWPSTD-4)
2.2.1. PSTD with Fourth-Order Accurate Time Stepping
2.2.2. Perfectly Matched Layer
2.2.3. Initial-Condition Excitation Technique
2.2.4. Moving Window Technique
3. Results and Discussion
3.1. Comparison of the Numerical Accuracy of PSTD-2 and PSTD-4
3.2. Comparison of Stability and Efficiency of PSTD-2 and PSTD-4
3.3. Comparison of Efficiency and Moving Window Length of PSTD-4 and MWPSTD-4
3.4. MWPSTD-4 Applied in Long-Distance Propagation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobson, A.R.; Knox, S.O.; Franz, R. FORTE observations of lightning radio-frequency signatures: Capabilities and basic results. Radio Sci. 1999, 34, 337–354. [Google Scholar] [CrossRef]
- Holden, D.N.; Munson, C.P.; Devenport, J.C. Satellite observations of trans-ionospheric pulse pairs. Geophys. Res. Lett. 1995, 22, 889–892. [Google Scholar] [CrossRef]
- Peterson, M.J. Combined Optical and Radio-Frequency Perspectives on the Time Evolution of Lightning Measured by the FORTE Satellite. Earth Space Sci. 2022, 9, e2022EA002281. [Google Scholar] [CrossRef]
- Mao, Y.Z. Advance on Satellite-borne (Space Based) Nuclear Burst Detection Technology. World Sci.-Tech. R&D 1998, 20, 50–66. [Google Scholar]
- Li, Z.X.; Cao, B.F.; Wei, Y.L. Review on the Development of Space-based Nuclear Electromagnetic Pulse Detection Technology. CBRN Def. 2023, 2, 1–11. [Google Scholar]
- Li, Z.X.; Cao, B.F.; Li, P.; Li, X.; Zhang, X.; Wei, Y.L.; Wang, Y.; Wang, L.H.; Zhang, T.C.; Li, X.; et al. Methodology and experiment study for the derivation of propagation parameters of the transionospheric electromagnetic pulses. Chin. J. Geophys. 2022. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.C. Dispersive propagation of trans-ionospheric pulse pairs in ionosphere. AIP Adv. 2022, 12, 1–5. [Google Scholar] [CrossRef]
- Wei, Y.L.; Hu, M.; Cao, B.F. Overview of Electromagnetic Pulse Propagation through the Ionosphere. Nucl. Electron. Detect. Technol. 2022, 42, 322–327. [Google Scholar]
- Wei, Y.L.; Li, X.Q.; Hu, M. Research on Transmission Characteristics of Electromagnetic Pulse in High-altitude Ionospheric Plasma. Nucl. Electron. Detect. Technol. 2022, 42, 391–395. [Google Scholar]
- Yao, J.X.; Shan, H.Y.; Cao, B. Waveform Prediction of V/UHF EMP Signal Propagation in the Ionosphere. In Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 15 November 2022; pp. 1062–1064. [Google Scholar]
- Ye, Z.H.; Liao, C.; Fu, H.J. Analysis of Electromagnetic Pulse Propagation in the Ionosphere. Sci. Technol. Eng. 2011, 11, 4449–4452. [Google Scholar]
- Smith, D.R.; Huang, C.Y.; Dao, E. FDTD Modeling of High-Frequency Waves Through Ionospheric Plasma Irregularities. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027499. [Google Scholar] [CrossRef]
- Kweon, J.H.; Park, M.S.; Cho, J. FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field. J. Electromagn. Eng. Sci. 2018, 18, 212–214. [Google Scholar] [CrossRef]
- Junya, Y.; Yoshihiro, B.; Thang, H.T. Simulation of the propagation of lightning electromagnetic pulses in the Earth–ionosphere waveguide using the fdtd method in the 2-D spherical coordinate system. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 335–339. [Google Scholar] [CrossRef]
- Takumi, T.; Akimasa, H.; Takeshi, M. Propagation Characteristic of Wideband Electromagnetic Wave in the Ionosphere. IEEE Trans. Fundam. Mater. 2006, 126, 1173–1176. [Google Scholar] [CrossRef]
- Liu, Q.H. The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 1997, 15, 158–165. [Google Scholar] [CrossRef]
- Liu, Q.H. A new numerical method for large-scale complex media: The PSTD algorithm. In Proceedings of the 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 942–944. [Google Scholar]
- Liu, Q.H. The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell’s equations. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1997, Montreal, Canada, 13–18 July 1997; pp. 122–125. [Google Scholar]
- Yang, D.; Liao, C.; Chen, W. The Study of High Power Microwave Pulse Propagation in the Ionosphere. In Proceedings of the 7th International Symposium on Antennas, Propagation & EM Theory, Guilin, China, 26–29 October 2006; pp. 1–4. [Google Scholar]
- Fu, H.J.; Liao, C.; Yang, D. Numerical simulation of ionospheric propagation based on the TSNU-PSTD. In Proceedings of the 2009 International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE 2009), Beijing, China, 3–6 November 2009; pp. 169–172. [Google Scholar]
- Yang, D.; Fu, H.J.; Liao, C. Investigations of microwave pulse propagation in ionosphere. In Proceedings of the 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, 12–16 April 2010; pp. 95–97. [Google Scholar]
- Yang, D.; Fu, H.J.; Liao, C. Study of electromagnetic pulse propagation in ionosphere using 2D PSTD. In Proceedings of the 2010 International Symposium on Signals, Systems and Electronics, Nanjing, China, 17–20 September 2010; pp. 1–3. [Google Scholar]
- Yang, D.; Liao, C. High power electromagnetic pulse propagation in ionosphere. High Power Laser Partic Le Beams 2009, 21, 1221–1224. [Google Scholar]
- Lee, T.W.; Hagness, S.C. Pseudospectral time-domain methods for modeling optical wave propagation in second-order nonlinear materials. J. Opt. Soc. Am. B 2004, 21, 330–342. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.D.; Zeng, Y. Study of Pseudo-Spectral Time-Domain Method with Higher-Order Uniform Sampling. J. Xi’an Univ. Technol. 2010, 26, 482–485. [Google Scholar]
- Li, Q.L.; Chen, Y.C. Pseudo-Spectral Time-Domain Analysis Using an Initial-Condition Excitation Technique for Elimination of Gibbs Phenomena. Chin. J. Electron. 2000, 9, 92–95. [Google Scholar]
- Luebbers, R.; Schuster, J.; Wu, K. Full wave propagation model based on moving window FDTD. In Proceedings of the IEEE Military Communications Conference, Boston, MA, USA, 13–16 October 2003; Volume 2, pp. 1397–1401. [Google Scholar] [CrossRef]
- Luebbers, R.; Schuster, J.; Wu, K. Application of moving window FDTD to prediction of path loss over irregular terrain. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Columbus, OH, USA, 22–27 June 2003; pp. 610–613. [Google Scholar] [CrossRef]
- Fidel, B.; Heyman, E.; Kastner, R. Hybrid Ray–FDTD Moving Window Approach to Pulse Propagation. J. Comput. Phys. 1997, 138, 480–500. [Google Scholar] [CrossRef]
Method Type | Time Step | CPU Time |
---|---|---|
PSTD-4 | 27 s | |
PSTD-4 | 52 s | |
PSTD-4 | 101 s | |
PSTD-4 | 202 s | |
PSTD-2 | 15 s | |
PSTD-2 | 30 s | |
PSTD-2 | 60 s | |
PSTD-2 | 120 s |
Distance | Time Step | CPU Time |
---|---|---|
50 km | 7.54 s | |
15.14 s | ||
100 km | 15.16 s | |
30.12 s | ||
300 km | 45.45 s | |
89.94 s | ||
500 km | 75.22 s | |
150.07 s | ||
800 km | 120.32 s | |
240.16 s | ||
1000 km | 150.48 s | |
302.79 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Cao, B.; Li, Z.; Zhang, T.; Duan, C.; Li, X.; Li, X.; Li, P. Efficient Fourth-Order PSTD Algorithm with Moving Window for Long-Distance EMP Propagation. Sensors 2024, 24, 6317. https://doi.org/10.3390/s24196317
Wei Y, Cao B, Li Z, Zhang T, Duan C, Li X, Li X, Li P. Efficient Fourth-Order PSTD Algorithm with Moving Window for Long-Distance EMP Propagation. Sensors. 2024; 24(19):6317. https://doi.org/10.3390/s24196317
Chicago/Turabian StyleWei, Yongli, Baofeng Cao, Zongxiang Li, Tianchi Zhang, Changjiao Duan, Xiao Li, Xiaoqiang Li, and Peng Li. 2024. "Efficient Fourth-Order PSTD Algorithm with Moving Window for Long-Distance EMP Propagation" Sensors 24, no. 19: 6317. https://doi.org/10.3390/s24196317
APA StyleWei, Y., Cao, B., Li, Z., Zhang, T., Duan, C., Li, X., Li, X., & Li, P. (2024). Efficient Fourth-Order PSTD Algorithm with Moving Window for Long-Distance EMP Propagation. Sensors, 24(19), 6317. https://doi.org/10.3390/s24196317