Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Line Scanning and Fluidic System
2.2.1. Line Scanning
2.2.2. Fluidic System
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef]
- Piatkevich, K.D.; Verkhusha, V.V. Guide to red fluorescent proteins and biosensors for flow cytometry. Methods Cell Biol. 2011, 102, 431–461. [Google Scholar] [PubMed]
- Ibrahim, S.F.; van den Engh, G. Flow cytometry and cell sorting. In Cell Separation: Fundamentals, Analytical and Preparative Methods; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–39. [Google Scholar]
- Zhao, X.; Qi, Z.; Gao, Z.; He, H. High counting of circulating tumor cells in blood is not directly related to metastasis. Cytom. Part A 2023, 103, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tang, W.; Cheng, P.; Zhou, Q.; Tian, X.; Wei, X.; He, H. Monitoring circulating tumor cells in vivo by a confocal microscopy system. Cytom. Part A 2019, 95, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Suo, Y.; Gu, Z.; Wei, X. Advances of in vivo flow cytometry on cancer studies. Cytom. Part A 2020, 97, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.; Georgakoudi, I.; Wei, X.; Prossin, A.; Lin, C.P. In vivo flow cytometer for real-time detection and quantification of circulating cells. Opt. Lett. 2004, 29, 77–79. [Google Scholar] [CrossRef]
- Georgakoudi, I.; Solban, N.; Novak, J.; Rice, W.L.; Wei, X.; Hasan, T.; Lin, C.P. In Vivo Flow Cytometry: A New Method for Enumerating Circulating Cancer Cells. Cancer Res 2004, 64, 5044–5047. [Google Scholar] [CrossRef]
- Ramani, V.C.; Lemaire, C.A.; Triboulet, M.; Casey, K.M.; Heirich, K.; Renier, C.; Vilches-Moure, J.G.; Gupta, R.; Razmara, A.M.; Zhang, H.; et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019, 21, 1–16. [Google Scholar] [CrossRef]
- Sipkins, D.A.; Wei, X.; Wu, J.W.; Runnels, J.M.; Côté, D.; Means, T.K.; Luster, A.D.; Scadden, D.T.; Lin, C.P. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005, 435, 969–973. [Google Scholar] [CrossRef]
- Fan, Z.; Yan, J.; Liu, G.; Tan, X.; Weng, X.; Wu, W.; Zhou, J.; Wei, X. Real-Time Monitoring of Rare Circulating Hepatocellular Carcinoma Cells in an Orthotopic Model by In Vivo Flow Cytometry Assesses Resection on Metastasis. Cancer Res. 2012, 72, 2683–2691. [Google Scholar] [CrossRef]
- Suo, Y.; Xie, C.; Zhu, X.; Fan, Z.; Yang, Z.; He, H.; Wei, X. Proportion of circulating tumor cell clusters increases during cancer metastasis. Cytom. Part A 2017, 91, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Abeytunge, S.; Li, Y.; Larson, B.; Peterson, G.; Seltzer, E.; Toledo-Crow, R.; Rajadhyaksha, M. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue. J. Biomed. Opt. 2013, 18, 061227. [Google Scholar] [CrossRef] [PubMed]
- Nitta, N.; Sugimura, T.; Isozaki, A.; Mikami, H.; Hiraki, K.; Sakuma, S.; Iino, T.; Arai, F.; Endo, T.; Fujiwaki, Y.; et al. Intelligent image-activated cell sorting. Cell 2018, 175, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Mikami, H.; Lei, C.; Nitta, N.; Sugimura, T.; Ito, T.; Ozeki, Y.; Goda, K. High-speed imaging meets single-cell analysis. Chem 2018, 10, 2278–2300. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.; Yang, J.M.; Maslov, K.I.; Wong, T.T.; Li, L.; Huang, C.H.; Zou, J.; Wang, L.V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 2015, 12, 407–410. [Google Scholar] [CrossRef]
- Nyman, L.R.; Wells, K.S.; Head, W.S.; McCaughey, M.; Ford, E.; Brissova, M.; Piston, D.W.; Powers, A.C. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J. Clin. Investig. 2008, 118, 3790–3797. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, P.; Boutilier, R.; Kim, M.Y.; Lee, Y.J.; Lee, H. Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second. Opt. Express 2013, 21, 23611–23618. [Google Scholar] [CrossRef]
- Mikami, H.; Harmon, J.; Kobayashi, H.; Hamad, S.; Wang, Y.; Iwata, O.; Suzuki, K.; Ito, T.; Aisaka, Y.; Kutsuna, N.; et al. Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica 2018, 5, 117–126. [Google Scholar] [CrossRef]
- Diebold, E.D.; Buckley, B.; Gossett, D.R.; Jalali, B. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nat. Photonics 2013, 7, 806–810. [Google Scholar] [CrossRef]
- Mikami, H.; Kawaguchi, M.; Huang, C.J.; Matsumura, H.; Sugimura, T.; Huang, K.; Lei, C.; Ueno, S.; Miura, T.; Ito, T.; et al. Virtual-freezing fluorescence imaging flow cytometry. Nat. Commun. 2020, 11, 1162. [Google Scholar] [CrossRef]
- Nakagawa, K.; Iwasaki, A.; Oishi, Y.; Horisaki, R.; Tsukamoto, A.; Nakamura, A.; Hirosawa, K.; Liao, H.; Ushida, T.; Goda, K.; et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics 2014, 8, 695–700. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kobayashi, K.; Wakisaka, Y.; Deng, D.; Tanaka, S.; Huang, C.J.; Lei, C.; Sun, C.W.; Liu, H.; Fujiwaki, Y.; et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl. Acad. Sci. USA 2019, 116, 15842–15848. [Google Scholar] [CrossRef]
- Gala de Pablo, J.; Lindley, M.; Hiramatsu, K.; Goda, K. High-throughput Raman flow cytometry and beyond. Acc. Chem. Res. 2021, 54, 2132–2143. [Google Scholar] [CrossRef] [PubMed]
- Boutros, M.; Heigwer, F.; Laufer, C. Microscopy-based high-content screening. Cell 2015, 163, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Brasko, C.; Smith, K.; Molnar, C.; Farago, N.; Hegedus, L.; Balind, A.; Balassa, T.; Szkalisity, A.; Sukosd, F.; Kocsis, K.; et al. Intelligent image-based in situ single-cell isolation. Nat. Commun. 2018, 9, 226. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Ding, L.; Yan, J.; Xu, J.; He, H. Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy. Sensors 2023, 23, 3305. https://doi.org/10.3390/s23063305
Zhao X, Ding L, Yan J, Xu J, He H. Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy. Sensors. 2023; 23(6):3305. https://doi.org/10.3390/s23063305
Chicago/Turabian StyleZhao, Xiaohui, Leqi Ding, Jingsheng Yan, Jin Xu, and Hao He. 2023. "Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy" Sensors 23, no. 6: 3305. https://doi.org/10.3390/s23063305
APA StyleZhao, X., Ding, L., Yan, J., Xu, J., & He, H. (2023). Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy. Sensors, 23(6), 3305. https://doi.org/10.3390/s23063305