Movement Prototypes in a Complex Teamgym Gymnastics Technique on the Vaulting Table and Their Relationship with Judges’ Scores
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Task
2.3. Instruments and Procedure
2.4. Data Analysis
2.4.1. Statistical Procedures
2.4.2. Statistical Validation
3. Results
3.1. Handspring Tucked Somersault with a Half Twist—Global Analysis
3.2. Handspring Tucked Somersault with a Half Twist—Phases Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, R.; Lee, T. Motor Learning and Performance, 6th ed; Human Kinetics Publishers: Champaign, IL, USA, 2020. [Google Scholar]
- Araújo, D.; Woods, C.; McCosker, C.; Carvalho, J.; Renshaw, I.; Davids, K. Functional Variability Enhances Performance in Self-paced Tasks: An Ecological Dynamics Approach. In The Psychology of Closed Self-Paced Motor Tasks in Sports; Routledge: New York, NY, USA, 2022. [Google Scholar]
- Heinen, T.; Jeraj, D.; Thoeren, M.; Vinken, P. Target-directed running in gymnastics: The role of the springboard position as an informational source to regulate handsprings on vault. Biol. Sport 2011, 28, 215–221. [Google Scholar] [CrossRef]
- Bradshaw, E. Gymnastics: Target-directed running in gymnastics: A preliminary exploration of vaulting. Sports Biomech. 2004, 3, 125–144. [Google Scholar] [CrossRef]
- Davids, K.; Araújo, D.; Seifert, L.; Oth, D. Expert Performance in Sport-An ecological dynamics perspective. In Rotledge Handbook of Sport Expertise; Baker, J., Farrow, D., Eds.; Routledge: New York, NY, USA, 2015; pp. 130–144. [Google Scholar]
- Davids, K.; Araújo, D.; Hristovski, R.; Passos, P.; Chow, J.Y. Ecological dynamics and motor learning design in sport. Ski. Acquis. Sport 2012, 25, 112–130. [Google Scholar]
- Headrick, J.; Renshaw, I.; Davids, K.; Pinder, R.A.; Araújo, D. The dynamics of expertise acquisition in sport: The role of affective learning design. Psychol. Sport Exerc. 2015, 16, 83–90. [Google Scholar] [CrossRef]
- Davids, K.; Araújo, D.; Vilar, L.; Renshaw, I.; Pinder, R. An ecological dynamics approach to skill acquisition: Implications for development of talent in sport. Talent. Dev. Excell. 2013, 5, 21–34. [Google Scholar]
- Newell, K. Constraints on the Development of Coordination. In Motor Development in Children: Aspects of Co-Ordination and Control; Newell, M.M., Ed.; Martinus Nijhoff: Dordrecht, The Netherlands, 1986; pp. 341–360. [Google Scholar]
- Harbourne, R.T.; Stergiou, N. Movement Variability and the Use of Nonlinear Tools: Principles to Guide Physical Therapist Practice. Phys. Ther. 2009, 89, 267–282. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Z.; Wen, H. Intra-Subject and Inter-Subject Movement Variability Quantified with Muscle Synergies in Upper-Limb Reaching Movements. Biomimetics 2021, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Kochanowicz, A.; Niespodziński, B.; Marina, M.; Mieszkowski, J.; Biskup, L.; Kochanowicz, K. Relationship between postural control and muscle activity during a handstand in young and adult gymnasts. Hum. Mov. Sci. 2018, 58, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Irwin, G.; Kerwin, D.G. The influence of the vaulting table on the handspring front somersault. Sports Biomech. 2009, 8, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.; Hume, P.; Calton, M.; Aisbett, B. Reliability and variability of day-to-day vault training measures in artistic gymnastics. Sports Biomech. 2010, 9, 79–97. [Google Scholar] [CrossRef]
- Haigis, T.; Schlegel, K. The regulatory influence of the visual system: An exploratory study in gymnastics vaulting. Sci. Gymnast. J. 2020, 12, 61–73. [Google Scholar] [CrossRef]
- Heinen, T.; Vinken, P.M.; Jeraj, D.; Velentzas, K. Movement Regulation of Handsprings on Vault. Res. Q. Exerc. Sport 2013, 84, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Sjöstrand, P. 2022–2024 Teamgym Code of Points Seniors and Juniors; European Gymnastics: Lausanne, Switzerland, 2022; Available online: https://backend.europeangymnastics.com/sites/default/files/paragraph/document/2022TeamGymCodeofPoints.pdf (accessed on 30 December 2022).
- Schollhorn, W.; Chow, J.; Glazier, P.; Button, C. Self-Organizing Maps and Cluster Analysis in Elite and Sub-Elite Athletic Performance. In Complex Systems in Sport; Routledge: New York, NY, USA, 2014; pp. 145–159. [Google Scholar]
- Davids, K.; Hristovski, R.; Araújo, D.; Balagué Serre, N.; Button, C.; Passos, P. Complex systems in Sport; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Hughes, K.; Lemmetty, H.; Sjostrand, P.; Dvoracek, R.; Gryga, P. Directives for Equipment (European Union of Gymnastics). 2013. Available online: https://www.british-gymnastics.org/technical-information/discipline-updates/teamgym/4298-2013-2016-teamgym-equipment-directives/file (accessed on 1 April 2022).
- Barreto, J.; Peixoto, C.; Cabral, S.; Williams, A.; Casanova, F.; Pedro, B.; Veloso, A. Concurrent Validation of 3D Joint Angles during Gymnastics Techniques Using Inertial Measurement Units. Electronics 2021, 10, 1251. [Google Scholar] [CrossRef]
- Mo, S.; Chow, D.H. Accuracy of three methods in gait event detection during overground running. Gait Posture 2018, 59, 93–98. [Google Scholar] [CrossRef]
- Petitjean, F.; Ketterlin, A.; Gancarski, P. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit. 2011, 44, 678–693. [Google Scholar] [CrossRef]
- Keogh, E.J.; Pazzani, M.J. Scaling up Dynamic Time Warping for Datamining Applications. Proceedings of Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Irvine, CA, USA, 20–23 August 2000. [Google Scholar] [CrossRef]
- Petitjean, F.; Forestier, G.; Webb, G.I.; Nicholson, A.E.; Chen, Y.; Keogh, E. Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification. In Proceedings of the 2014 IEEE International Conference on Data Mining, Shenzhen, China, 14–17 December 2014. [Google Scholar] [CrossRef]
- Barth, J. Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data. Sensors 2015, 15, 6419–6440. [Google Scholar] [CrossRef]
- Adistambha, K.; Ritz, C.H.; Burnett, I.S. Motion Classification Using Dynamic Time Warping. In Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, Cairns, QLD, Australia, 8–10 October 2008. [Google Scholar] [CrossRef]
- Bruineberg, J.; Seifert, L.; Rietveld, E.; Kiverstein, J. Metastable attunement and real-life skilled behavior. Synthese 2021, 199, 12819–12842. [Google Scholar] [CrossRef]
- Mack, M.; Federbusch, S.; Ferber, M.; Heinen, T. Movement prototypes and their relationship in the performance of a gymnastics floor routine. J. Hum. Sport Exerc. 2020, 15. [Google Scholar] [CrossRef]
- Araújo, D.; Davids, K.; Chow, J.; Passos, P.; Raab, M. The development of decision making skill in sport: An ecological dynamics perspective BT-Perspectives on Cognition and Action in Sport. In Perspectives on Cognition and Action in Sport; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 157–169. Available online: http://eprints.qut.edu.au/28514%5Cnfile:///Users/tehrandavis/Dropbox/Papers2/Files/Ara?jo2009_The_development_of_decision_making_skill_in_sport_An_ecological_dynamics_perspective.pdf%5Cnpapers2://publication/uuid/D95EDAD5-F932-4CA9-822B-38C8B20C29C5 (accessed on 30 December 2022).
- Araújo, D.; Hristovski, R.; Seifert, L.; Carvalho, J.; Davids, K. Ecological cognition: Expert decision-making behaviour in sport. Int. Rev. Sport Exerc. Psychol. 2017, 12, 1–25. [Google Scholar] [CrossRef]
- Seifert, L.; Button, C.; Davids, K. Key Properties of Expert Movement Systems in Sport. Sports Med. 2012, 43, 167–178. [Google Scholar] [CrossRef]
- Stergiou, N.; Harbourne, R.T.; Cavanaugh, J.T. Optimal Movement Variability: A New Theoretical Perspective for Neurologic Physical Therapy. J. Neurol. Phys. Ther. 2006, 30, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Farana, R.; Vaverka, F. The effect of biomechanical variables on the assessment of vaulting in top-level artistic female gymnasts in world cup competitions. Acta Gymnica 2012, 42, 49–57. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874300176&partnerID=40&md5=1c6df47fe1d4de01bf373e242ecb5ebd (accessed on 15 April 2022). [CrossRef]
- Kochanowicz, A.; Kochanowicz, K.; Niespodziúski, B.; Mieszkowski, J.; Aschenbrenner, P.; Bielec, G.; Szark-Eckardt, M. Maximal Power of the Lower Limbs of Youth Gymnasts and Biomechanical Indicators of the Forward Handspring Vault Versus the Sports Result. J. Hum. Kinet. 2016, 53, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.M.B.; Carrara, P.; Serrão, J.C.; Amadio, A.C.; Mochizuki, L. Kinematic variables of table vault on artistic gymnastics. Rev. Bras. Educ. Física Esporte 2016, 30, 97–107. [Google Scholar] [CrossRef]
- Prassas, S.; Kwon, Y.H.; Sands, W.A. Biomechanical research in artistic gymnastics: A review. Sports Biomech. 2006, 5, 261–291. [Google Scholar] [CrossRef]
- Schärer, C.; Lehmann, T.; Naundorf, F.; Taube, W.; Hübner, K. The faster, the better? Relationships between run-up speed, the degree of difficulty (D-score), height and length of flight on vault in artistic gymnastics. PLoS ONE 2019, 14, e0213310. [Google Scholar] [CrossRef]
- Atiković, A.; Kazazović, E.; Kamanješavić, E.; Mujanović, A.N. Estimation correlation of biome-chanical parameters and vault start value in men’ s artistic gymnastics. Sport Sci. Pract. Asp.-Int. Sci. J. Kinesiol. 2019, 16, 25–30. [Google Scholar]
- Schärer, C.; Haller, N.; Taube, W.; Hübner, K. Physical determinants of vault performance and their age-related differences across male junior and elite top-level gymnasts. PLoS ONE 2019, 14, e0225975. [Google Scholar] [CrossRef]
- Barreto, J.; Casanova, F.; Peixoto, C.; Fawver, B.; Williams, A. How Task Constraints Influence the Gaze and Motor Behaviours of Elite-Level Gymnasts. Int. J. Environ. Res. Public Health 2021, 18, 6941. [Google Scholar] [CrossRef]
- Hiley, M.J.; Jackson, M.I.; Yeadon, M.R. Optimal technique for maximal forward rotating vaults in men’s gymnastics. Hum. Mov. Sci. 2015, 42, 117–131. [Google Scholar] [CrossRef]
- Atiković, A. New Regression Models to Evaluate the Relationship between Biomechanics of Gymnastic Vault and Initial Vault Difficulty Values. J. Hum. Kinet. 2012, 35, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y. Three-dimensional analysis of handspring with full turn vault: Deterministic model, coaches’ beliefs, and judges’ scores. J. Appl. Biomech. 1998, 14, 190–210. [Google Scholar] [CrossRef]
- Veličković, S.; Petković, D.; Petković, E. A case study about differences in characteristics of the run-up approach on the vault between top-class and middle-class. Sci. Gymnast. J. 2011, 3, 25–34. [Google Scholar]
- Renshaw, I.; Davids, K.; Newcombe, D.; Roberts, W. A Theoretical Basis for a Constraints-Lead Approach. In The Constraints-Led Approach: Principles for Sports Coaching and Practice Design; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Ramos, A.; Afonso, J.; Coutinho, P.; Bessa, C.; Farias, C.; Mesquita, I. Appropriateness-Based Activities: Reaching Out to Every Learner. In Learner-Oriented Teaching and Assessment in Youth Sport; Routledge: Porto, Portugal, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto, J.; Henriques, R.; Cabral, S.; Pedro, B.; Peixoto, C.; Veloso, A. Movement Prototypes in a Complex Teamgym Gymnastics Technique on the Vaulting Table and Their Relationship with Judges’ Scores. Sensors 2023, 23, 3240. https://doi.org/10.3390/s23063240
Barreto J, Henriques R, Cabral S, Pedro B, Peixoto C, Veloso A. Movement Prototypes in a Complex Teamgym Gymnastics Technique on the Vaulting Table and Their Relationship with Judges’ Scores. Sensors. 2023; 23(6):3240. https://doi.org/10.3390/s23063240
Chicago/Turabian StyleBarreto, Joana, Rui Henriques, Sílvia Cabral, Bruno Pedro, César Peixoto, and António Veloso. 2023. "Movement Prototypes in a Complex Teamgym Gymnastics Technique on the Vaulting Table and Their Relationship with Judges’ Scores" Sensors 23, no. 6: 3240. https://doi.org/10.3390/s23063240
APA StyleBarreto, J., Henriques, R., Cabral, S., Pedro, B., Peixoto, C., & Veloso, A. (2023). Movement Prototypes in a Complex Teamgym Gymnastics Technique on the Vaulting Table and Their Relationship with Judges’ Scores. Sensors, 23(6), 3240. https://doi.org/10.3390/s23063240