Development of the Tele-Measurement of Plasma Uniformity via Surface Wave Information (TUSI) Probe for Non-Invasive In-Situ Monitoring of Electron Density Uniformity in Plasma Display Fabrication Process
Abstract
1. Introduction
2. Configuration
3. Validation of the TUSI Probe with the Cutoff Probe
3.1. Experiment Setup
3.2. Results and Discussion
4. Demonstration of the TUSI Probe Working Beneath a Quartz and a SiO(100 nm)/Si Wafer
4.1. Experiment Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.H.; Murphy, A.B.; Schneider, W.F.; et al. The 2020 plasma catalysis roadmap. J. Phys. D Appl. Phys. 2020, 53, 443001. [Google Scholar] [CrossRef]
- Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; et al. Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 127–157. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–22, xxxv. [Google Scholar]
- You, Y.B.; Lee, Y.S.; Kim, S.J.; Cho, C.H.; Seong, I.H.; Jeong, W.N.; Choi, M.S.; You, S.J. Influence of Additive N2 on O2 Plasma Ashing Process in Inductively Coupled Plasma. Nanomaterials 2022, 12, 3798. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yeom, H.; Choi, D.; Kim, S.; Lee, J.; Kim, J.; Lee, H.; You, S. Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe. Nanomaterials 2022, 12, 3828. [Google Scholar] [CrossRef] [PubMed]
- Seong, I.H.; Lee, J.J.; Cho, C.H.; Lee, Y.S.; Kim, S.J.; You, S.J. Characterization of SiO2 Over Poly-Si Mask Etching in Ar/C4F8 Capacitively Coupled Plasma. Appl. Sci. Converg. Technol. 2021, 30, 176–182. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.; Cho, C.; Choi, M.; Seong, I.; Lee, J.; Kim, D.; You, S. Observation of prior light emission before arcing development in a low-temperature plasma with multiple snapshot analysis. Sci. Rep. 2022, 12, 20976. [Google Scholar] [CrossRef]
- Yang, R.; Chen, R. Real-time plasma process condition sensing and abnormal process detection. Sensors 2010, 10, 5703–5723. [Google Scholar] [CrossRef]
- Abbas, M.A.; Dijk, L.V.; Jahromi, K.E.; Nematollahi, M.; Harren, F.J.; Khodabakhsh, A. Broadband time-resolved absorption and dispersion spectroscopy of methane and ethane in a plasma using a mid-infrared dual-comb spectrometer. Sensors 2020, 20, 6831. [Google Scholar] [CrossRef]
- Wang, J.; Ji, W.; Du, Q.; Xing, Z.; Xie, X.; Zhang, Q. A Long Short-Term Memory Network for Plasma Diagnosis from Langmuir Probe Data. Sensors 2022, 22, 4281. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, Y.; Cho, C.; You, S. Crossing Frequency Method Applicable to Intermediate Pressure Plasma Diagnostics Using the Cutoff Probe. Sensors 2022, 22, 1291. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; You, Y.; Lee, Y.; Seong, I.; Cho, C.; Lee, J.; You, S. Development of the Measurement of Lateral Electron Density (MOLE) Probe Applicable to Low-Pressure Plasma Diagnostics. Sensors 2022, 22, 5487. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, J.J.; Lee, Y.S.; Yeom, H.J.; Lee, H.C.; Kim, J.H.; You, S.J. Computational Characterization of Microwave Planar Cutoff Probes for Non-Invasive Electron Density Measurement in Low-Temperature Plasma: Ring-and Bar-Type Cutoff Probes. Appl. Sci. 2020, 10, 7066. [Google Scholar] [CrossRef]
- Kim, K.K.; Lee, J.J.; Kim, S.J.; Cho, C.H.; Yoo, S.W.; You, S.J. Development of High-precision RF Sensor. Appl. Sci. Converg. Technol. 2019, 28, 88–92. [Google Scholar] [CrossRef]
- Kwon, J.W.; Ryu, S.; Park, J.; Lee, H.; Jang, Y.; Park, S.; Kim, G.H. Development of virtual metrology using plasma information variables to predict Si etch profile processed by SF6/O2/Ar capacitively coupled plasma. Materials 2021, 14, 3005. [Google Scholar] [CrossRef]
- Yeom, H.; Kim, J.; Choi, D.; Choi, E.; Yoon, M.; Seong, D.; You, S.J.; Lee, H.C. Flat cutoff probe for real-time electron density measurement in industrial plasma processing. Plasma Sources Sci. Technol. 2020, 29, 035016. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, Y.; Kim, D.; You, S. Finding the optimum design of the planar cutoff probe through a computational study. AIP Adv. 2021, 11, 025241. [Google Scholar] [CrossRef]
- Seong, I.; Kim, S.; Lee, Y.; Cho, C.; Lee, J.; Jeong, W.; You, Y.; You, S. Development of a Noninvasive Real-Time Ion Energy Distribution Monitoring System Applicable to Collisional Plasma Sheath. Sensors 2022, 22, 6254. [Google Scholar] [CrossRef]
- Kim, S.; Seong, I.; Lee, Y.; Cho, C.; Jeong, W.; You, Y.; Lee, J.; You, S. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors 2022, 22, 5871. [Google Scholar] [CrossRef]
- Kim, D.; You, S.; Kim, S.; Kim, J.; Lee, J.; Kang, W.; Hur, M. Planar cutoff probe for measuring the electron density of low-pressure plasmas. Plasma Sources Sci. Technol. 2019, 28, 015004. [Google Scholar] [CrossRef]
- Ishikawa, K.; Karahashi, K.; Ishijima, T.; Cho, S.I.; Elliott, S.; Hausmann, D.; Mocuta, D.; Wilson, A.; Kinoshita, K. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys. 2018, 57, 06JA01. [Google Scholar] [CrossRef]
- Mahoney, L.; Carter, D.; Roberts, S.; Roche, G. Wafer Probe for Measuring Plasma and Surface Characteristics in Plasma Processing Environments. U.S. Patent US20050011611A1, 14 December 2004. [Google Scholar]
- Kim, Y.C.; Jang, S.H.; Oh, S.J.; Lee, H.C.; Chung, C.W. Two-dimensional-spatial distribution measurement of electron temperature and plasma density in low temperature plasmas. Rev. Sci. Instruments 2013, 84, 053505. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.J.; Yun, I. Real-time plasma uniformity measurement technique using optical emission spectroscopy with revolving module. IEEE Sensors J. 2018, 19, 2356–2361. [Google Scholar] [CrossRef]
- Ogawa, D.; Nakamura, K.; Sugai, H. Experimental validity of double-curling probe method in film-depositing plasma. Plasma Sources Sci. Technol. 2021, 30, 085009. [Google Scholar] [CrossRef]
- Liang, I.; Nakamura, K.; Sugai, H. Modeling microwave resonance of curling probe for density measurements in reactive plasmas. Appl. Phys. Express 2011, 4, 066101. [Google Scholar] [CrossRef]
- Schulz, C.; Styrnoll, T.; Awakowicz, P.; Rolfes, I. The planar multipole resonance probe: Challenges and prospects of a planar plasma sensor. IEEE Trans. Instrum. Meas. 2014, 64, 857–864. [Google Scholar] [CrossRef]
- Dine, S.; Booth, J.P.; Curley, G.A.; Corr, C.; Jolly, J.; Guillon, J. A novel technique for plasma density measurement using surface-wave transmission spectra. Plasma Sources Sci. Technol. 2005, 14, 777. [Google Scholar] [CrossRef]
- Margraf, M. QucsStudio—A Free and Powerful Circuit Simulator. Available online: http://qucsstudio.de (accessed on 1 January 2022).
- Lee, S.W. Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties and its Practical Issues. Appl. Sci. Converg. Technol. 2009, 18, 176–185. [Google Scholar] [CrossRef][Green Version]
- Kim, D.W.; You, S.; Kim, J.; Chang, H.; Oh, W.Y. Computational comparative study of microwave probes for plasma density measurement. Plasma Sources Sci. Technol. 2016, 25, 035026. [Google Scholar] [CrossRef]
- Kim, D.W.; You, S.; Kwon, J.; You, K.; Seo, B.; Kim, J.; Yoon, J.S.; Oh, W.Y. Reproducibility of the cutoff probe for the measurement of electron density. Phys. Plasmas 2016, 23, 063501. [Google Scholar] [CrossRef]
- Seo, B.; Kim, D.W.; Kim, J.H.; You, S. Investigation of reliability of the cutoff probe by a comparison with Thomson scattering in high density processing plasmas. Phys. Plasmas 2017, 24, 123502. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Kim, D.; Kim, J.; You, S. A transmission line model of the cutoff probe. Plasma Sources Sci. Technol. 2019, 28, 055014. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, Y.; Kim, D.; You, S. Effect of an inhomogeneous electron density profile on the transmission microwave frequency spectrum of the cutoff probe. Plasma Sources Sci. Technol. 2020, 29, 125014. [Google Scholar] [CrossRef]
V (V) | V (V) | V (V) | RF1 | RF2 | RF3 | RF4 | RF5 | RF6 | RF7 | RF8 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | ⋆ | - | - | - | - | - | - | - |
0 | 0 | 1.8 | - | ⋆ | - | - | - | - | - | - |
0 | 1.8 | 0 | - | - | ⋆ | - | - | - | - | - |
0 | 1.8 | 1.8 | - | - | - | ⋆ | - | - | - | - |
1.8 | 0 | 0 | - | - | - | - | ⋆ | - | - | - |
1.8 | 0 | 1.8 | - | - | - | - | - | ⋆ | - | - |
1.8 | 1.8 | 0 | - | - | - | - | - | - | ⋆ | - |
1.8 | 1.8 | 1.8 | - | - | - | - | - | - | - | ⋆ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Choi, M.-S.; Lee, S.-H.; Jeong, W.-N.; Lee, Y.-S.; Seong, I.-H.; Cho, C.-H.; Kim, D.-W.; You, S.-J. Development of the Tele-Measurement of Plasma Uniformity via Surface Wave Information (TUSI) Probe for Non-Invasive In-Situ Monitoring of Electron Density Uniformity in Plasma Display Fabrication Process. Sensors 2023, 23, 2521. https://doi.org/10.3390/s23052521
Kim S-J, Choi M-S, Lee S-H, Jeong W-N, Lee Y-S, Seong I-H, Cho C-H, Kim D-W, You S-J. Development of the Tele-Measurement of Plasma Uniformity via Surface Wave Information (TUSI) Probe for Non-Invasive In-Situ Monitoring of Electron Density Uniformity in Plasma Display Fabrication Process. Sensors. 2023; 23(5):2521. https://doi.org/10.3390/s23052521
Chicago/Turabian StyleKim, Si-Jun, Min-Su Choi, Sang-Ho Lee, Won-Nyoung Jeong, Young-Seok Lee, In-Ho Seong, Chul-Hee Cho, Dae-Woong Kim, and Shin-Jae You. 2023. "Development of the Tele-Measurement of Plasma Uniformity via Surface Wave Information (TUSI) Probe for Non-Invasive In-Situ Monitoring of Electron Density Uniformity in Plasma Display Fabrication Process" Sensors 23, no. 5: 2521. https://doi.org/10.3390/s23052521
APA StyleKim, S.-J., Choi, M.-S., Lee, S.-H., Jeong, W.-N., Lee, Y.-S., Seong, I.-H., Cho, C.-H., Kim, D.-W., & You, S.-J. (2023). Development of the Tele-Measurement of Plasma Uniformity via Surface Wave Information (TUSI) Probe for Non-Invasive In-Situ Monitoring of Electron Density Uniformity in Plasma Display Fabrication Process. Sensors, 23(5), 2521. https://doi.org/10.3390/s23052521