Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications
Abstract
1. Introduction
2. Antenna Design Methodology
2.1. Proposed Single Antenna Design
2.2. Design Methodology
2.3. Equivalent Circuit Model
3. Results and Discussion
Fabrication and Measurements
4. Comparison with State-of-the-Art Antennas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Nella, A.; Gandhi, A.S. A survey on microstrip antennas for portable wireless communication system applications. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 2156–2165. [Google Scholar] [CrossRef]
- Kadir, E.A.; Shamsuddin, S.M.; Rahman, E.S.T.A.; Rahim, S.K.A.; Rosa, S.L. Multi Bands Antenna for Wireless Communication and Mobile System. Int. J. Circuits Syst. Signal Process. 2014, 8, 563–568. [Google Scholar]
- Laheurte, J.-M. Compact Antennas for Wireless Communications and Terminals: Theory and Design; Wiley-ISTE: Hoboken, NJ, USA, 2012; 272p. [Google Scholar] [CrossRef]
- Dakulagi, V.; Bakhar, M. Advances in Smart Antenna Systems for Wireless Communication. Wireless Pers. Commun. 2020, 110, 931–957. [Google Scholar] [CrossRef]
- Sharma, S.K.; Chieh, J.S. Multifunctional Antennas and Arrays for Wireless Communication Systems; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; 464p. [Google Scholar]
- Goudarzi, A.; Honari, M.M.; Mirzavand, R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics 2020, 9, 1080. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, S.; Khan, B.; Flint, J. A multi-band switchable antenna for Wi-Fi, 3G Advanced, WiMAX, and WLAN wireless applications. Int. J. Microw. Wirel. Technol. 2018, 10, 991–997. [Google Scholar] [CrossRef]
- Chetal, S.; Nayak, A.K.; Panigrahi, R.K. Multiband antenna for WLAN, WiMAX and future wireless applications. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Afzal, W.; Rafique, U.; Ahmed, M.M.; Khan, M.A.; Mughal, F.A. A tri-band H-shaped microstrip patch antenna for DCS and WLAN applications. In Proceedings of the 2012 19th International Conference on Microwaves, Radar & Wireless Communications, Warsaw, Poland, 21–23 May 2012; pp. 256–258. [Google Scholar] [CrossRef]
- Lee, K.-F.; Tong, K.-F. Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances. Proc. IEEE 2012, 100, 2169–2180. [Google Scholar] [CrossRef]
- Waterhouse, R. Microstrip Patch Antennas: A Designer’s Guide; Springer: Boston, MA, USA, 2003; 421p. [Google Scholar] [CrossRef]
- Malik, P.K.; Padmanaban, S.; Holm-Nielsen, J.B. Microstrip Antenna Design for Wireless Applications; CRC Press: Boca Raton, FL, USA, 2021; 352p, ISBN 9780367554385. [Google Scholar]
- Liu, Y.; Si, L.; Wei, M.; Yan, P.; Yang, P.; Lu, H.; Zheng, C.; Yuan, Y.; Mou, J.; Lv, X.; et al. Some Recent Developments of Microstrip Antenna. Int. J. Antennas Propag. 2012, 2012, 428284. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Shen, G.; Li, R. A Triband SIW Cavity-Backed Differentially Fed Dual-Polarized Slot Antenna for WiFi/5G Applications. IEEE Trans. Antennas Propag. 2020, 68, 8209–8214. [Google Scholar] [CrossRef]
- Wahab, W.M.A.; Safavi-Naeini, S.; Busuioc, D. Low cost microstrip patch antenna array using planar waveguide technology for emerging millimeter-wave wireless communication. In Proceedings of the 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, Ottawa, ON, Canada, 5–8 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Davoudabadifarahani, H.; Ghalamkari, B. High efficiency miniaturized microstrip patch antenna for wideband terahertz communications applications. Optik 2019, 194, 163118. [Google Scholar] [CrossRef]
- Belen, M.A. Performance enhancement of a microstrip patch antenna using dual-layer frequency-selective surface for ISM band applications. Microw. Opt. Technol. Lett. 2018, 60, 2730–2734. [Google Scholar] [CrossRef]
- Chen, D.; Che, W.; Yang, W. High-efficiency microstrip patch antennas using non-periodic artificial magnetic conductor structure. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; et al. A Comprehensive Survey of “Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Darimireddy, N.; Mallikarjuna, A. Design of triple-layer double U-slot patch antenna for wireless applications. J. Appl. Res. Technol. 2015, 13, 526–534. [Google Scholar] [CrossRef]
- Tan, Q.; Chen, F.-C. Triband Circularly Polarized Antenna Using a Single Patch. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2013–2017. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Limiti, E.; Naser-Moghadasi, M.; Virdee, B.S.; Sadeghzadeh, R.A. A New Wideband Planar Antenna with Band-Notch Functionality at GPS, Bluetooth and WiFi Bands for Integration in Portable Wireless Systems. AEU—Int. J. Electron. Commun. 2017, 72, 79–85. [Google Scholar] [CrossRef]
- Naser-Moghadasi, M.; Alibakhshi-Kenari, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. New CRLH-Based Planar Slotted Antennas with Helical Inductors for Wireless Communication Systems, RF-Circuits and Microwave Devices at UHF-SHF Bands. Wirel. Pers. Commun. 2017, 92, 1029–1038. [Google Scholar]
- Li, E.; Li, X.J.; Zhao, Q. A Design of Ink-Printable Triband Slot Microstrip Patch Antenna for 5G Applications. In Proceedings of the 4th Australian Microwave Symposium (AMS), Sydney, Australia, 13–14 February 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Osama, W.; Khaleel, A. Double U-slot rectangular patch antenna for multiband applications. Comput. Electr. Eng. 2020, 84, 106608. [Google Scholar]
- Asif, S.; Rafiq, M. A compact multiband microstrip patch antenna with U-shaped parasitic elements. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 617–618. [Google Scholar]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadah, R. The Resonating MTM Based Miniaturized Antennas for Wide-band RF-Microwave Systems. Microw. Opt. Technol. Lett. 2015, 57, 2339–2344. [Google Scholar] [CrossRef]
- Khunead, G.; Nakasuwan, J.; Songthanapitak, N.; Anantrasirichai, N. Investigate Rectangular Slot Antenna with L-shape Strip. Piers Online 2007, 3, 1076–1079. [Google Scholar] [CrossRef]
- Prasad, M.; Khasim, S. A Triband Heart Shaped Microstrip Patch antenna. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 1070–1073. [Google Scholar] [CrossRef]
- Ghalibafan, J.; Farrokh, H. A new dual-band microstrip antenna with U-shaped slot. Prog. Electromagn. Res. C 2010, 12, 215–223. [Google Scholar] [CrossRef][Green Version]
- Chitra, R.; Nagarajan, V. Design of E slot rectangular microstrip slot antenna for WiMAX application. In Proceedings of the IEEE International Conference on Communication and Signal Processing, Melmaruvathur, India, 3–5 April 2013; pp. 1048–1052. [Google Scholar]
- Gupta, M.; Vinita, M. Koch boundary on the square patch microstrip antenna for ultra-wideband applications. Alex. Eng. J. 2018, 57, 2113–2122. [Google Scholar] [CrossRef]
- Roopa, R.; Kumarswamy, Y. Enhancement of performance parameters of sierpeinsiki antenna using computational technique. In Proceedings of the IEEE International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 23–25 March 2016; pp. 7–10. [Google Scholar]
- Dabas, T.; Kanaujia, B. Design of multiband multipolarised single feed patch antenna. IET Microw. Antennas Propag. 2018, 12, 2372–2378. [Google Scholar] [CrossRef]
- Mazen, K.; Emran, A. Design of Multi-band Microstrip Patch Antennas for Mid-band 5G Wireless Communication. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 458–469. [Google Scholar] [CrossRef]
- Mabaso, M.; Pradeep, K. A Microstrip Patch Antenna with Defected Ground Structure for Triple Band Wireless Communications. J. Commun. 2019, 14, 684–688. [Google Scholar] [CrossRef]
Parameters | Value (mm) | Parameters | Value (mm) |
---|---|---|---|
Lg | 40.8 | Wg | 50 |
L1 | 4.45 | W1 | 10.5 |
L2 | 4.0 | W2 | 3.5 |
L3 | 11.05 | W3 | 13.70 |
L4 | 21.50 | W4 | 5.10 |
L5 | 6.50 | W5 | 10.0 |
L6 | 10.0 | W6 | 7.0 |
Lf | 10.0 | Wf | 5.0 |
G | 2.0 | S | 19.2 |
Capacitor | Value (pF) | Inductor | Value (nH) | Resistor | Value (Ohm) |
---|---|---|---|---|---|
Cin | 2.3 | Lin | 1 | R1 | 50 |
C1 | 3.0 | L1 | 1.3 | R2 | 47 |
C2 | 20 | L2 | 100 | R3 | 45 |
C3 | 35 | L3 | 24 | Ra | 2 |
Ca | 2 | La | 1 | Zin | 50 |
Ref. No. | Size (mm3) | Operating Frequency (GHz) | Bandwidth (MHz) | Peak Gain (dB) | Substrate Material | Proposed Technique |
---|---|---|---|---|---|---|
[27] | 40 × 40 × 1.52 | 2.6, 6, 8.5 | 50, 22.8, 30 | 6.2, 4.52, 6.9 | FR-4 | Microstrip Patch |
[31] | 80 × 78.93 × 1.7 | 1.429, 1.839 | NA | 2.9, 4.3 | FR-4 | U-shaped patch |
[33] | 60 × 55 × 1.59 | 4.3, 5.0, 6.1, 7.4, 8.9, 9.2 | 68.6, 126.7, 132, 124.3, 191.2, 530.6 | 1.08, 3.23, 3.36, 2.77, 3.07, 4.87 | FR-4 | Square shaped microstrip patch |
[34] | 70 × 70 × 1.58 | 1.75, 3.65, 5.55, 6.6 | 170, 60, 140, 120 | 7.2, 11.2, 11.3, 7 | FR-4 | Sierpeinsiki-shaped patch |
[35] | 70 × 60 × 1.6 | 1, 1.2, 0.7 | 50, 60, 60 | 2.313, 2.396, 2.478 | FR-4 | Microstrip patch |
[36] | 94 × 78 × 3.18 | 2.53, 3.86, 6.45, 6.93 | 50.70, 410, 1250 | 8.18, 7.97, 10.56, 22, 5 | Rogors RT5880 | Microstrip Patch |
[37] | 50 × 50 × 1.5 | 1.2, 2.4, 5.6 | 12.76, 52.979, 52.979 | NA | FR-4 | Patch with defected ground |
[This work] | 60 × 50 × 1.6 | Sim: 1.8, 3.5, 5.4 Meas: 1.7, 3.39, 5.38 | Sim: 140, 180, 200 Meas: 140.2, 180.1, 200.2 | Sim: 2.34, 5.2, 1.42 Meas: 2.22, 5.18, 1.38 | FR-4 | F-shaped Planar patch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkorany, A.S.; Mousa, A.N.; Ahmad, S.; Saleeb, D.A.; Ghaffar, A.; Soruri, M.; Dalarsson, M.; Alibakhshikenari, M.; Limiti, E. Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors 2022, 22, 667. https://doi.org/10.3390/s22020667
Elkorany AS, Mousa AN, Ahmad S, Saleeb DA, Ghaffar A, Soruri M, Dalarsson M, Alibakhshikenari M, Limiti E. Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors. 2022; 22(2):667. https://doi.org/10.3390/s22020667
Chicago/Turabian StyleElkorany, Ahmed Saad, Alyaa Nehru Mousa, Sarosh Ahmad, Demyana Adel Saleeb, Adnan Ghaffar, Mohammad Soruri, Mariana Dalarsson, Mohammad Alibakhshikenari, and Ernesto Limiti. 2022. "Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications" Sensors 22, no. 2: 667. https://doi.org/10.3390/s22020667
APA StyleElkorany, A. S., Mousa, A. N., Ahmad, S., Saleeb, D. A., Ghaffar, A., Soruri, M., Dalarsson, M., Alibakhshikenari, M., & Limiti, E. (2022). Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors, 22(2), 667. https://doi.org/10.3390/s22020667