Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = triband antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5625 KiB  
Article
Compact Frequency-Agile and Mode-Reconfigurable Antenna for C-Band, Sub-6-GHz-5G, and ISM Applications
by Esraa Mousa Ali, Wahaj Abbas Awan, Anees Abbas, Syed Mujahid Abbas and Heba G. Mohamed
Micromachines 2025, 16(6), 724; https://doi.org/10.3390/mi16060724 - 19 Jun 2025
Viewed by 620
Abstract
This article presents the design and evaluation of a compact-sized antenna targeting heterogenous applications working in the C-band, 5G-sub-6GHz, and the ISM band. The antenna offers frequency reconfigurability along with multi-operational modes ranging from wideband to dual-band and tri-band. A compact-sized antenna is [...] Read more.
This article presents the design and evaluation of a compact-sized antenna targeting heterogenous applications working in the C-band, 5G-sub-6GHz, and the ISM band. The antenna offers frequency reconfigurability along with multi-operational modes ranging from wideband to dual-band and tri-band. A compact-sized antenna is designed initially to cover a broad bandwidth that ranges from 4 GHz to 7 GHz. Afterwards, various multiband antennas are formed by loading various stubs. Finally, the wideband antenna along with multi-stub loaded antennas are combined to form a single antenna. Furthermore, PIN diodes are loaded between the main radiator and stubs to activate the stubs on demand, which consequently generates various operational modes. The last stage of the design is optimization, which helps in achieving the desired bandwidths. The optimized antenna works in the wideband mode covering the C-band, Wi-Fi 6E, and the ISM band. Meanwhile, the multiband modes offer the additional coverage of the LTE, LTE 4G, ISM lower band, and GSM band. The various performance parameters are studied and compared with measured results to show the performance stability of the proposed reconfigurable antenna. In addition, an in-depth literature review along with comparison with proposed antenna is performed to show its potential for targeted applications. The utilization of FR4 as a substrate of the antenna along with its compact size of 15 mm × 20 mm while having multiband and multi-mode frequency reconfigurability makes it a strong candidate for present as well as for future smart devices and electronics. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Viewed by 480
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

24 pages, 14553 KiB  
Article
Multiple-Point Metamaterial-Inspired Microwave Sensors for Early-Stage Brain Tumor Diagnosis
by Nantakan Wongkasem and Gabriel Cabrera
Sensors 2024, 24(18), 5953; https://doi.org/10.3390/s24185953 - 13 Sep 2024
Cited by 1 | Viewed by 1529
Abstract
Simple, instantaneous, contactless, multiple-point metamaterial-inspired microwave sensors, composed of multi-band, low-profile metamaterial-inspired antennas, were developed to detect and identify meningioma tumors, the most common primary brain tumors. Based on a typical meningioma tumor size of 5–20 mm, a higher operating frequency, where the [...] Read more.
Simple, instantaneous, contactless, multiple-point metamaterial-inspired microwave sensors, composed of multi-band, low-profile metamaterial-inspired antennas, were developed to detect and identify meningioma tumors, the most common primary brain tumors. Based on a typical meningioma tumor size of 5–20 mm, a higher operating frequency, where the wavelength is similar or smaller than the tumor target, is crucial. The sensors, designed for the microwave Ku band range (12–18 GHz), where the electromagnetic property values of tumors are available, were implemented in this study. A seven-layered head phantom, including the meningioma tumors, was defined using actual electromagnetic parametric values in the frequency range of interest to mimic the actual human head. The reflection coefficients can be recorded and analyzed instantaneously, reducing high electromagnetic radiation consumption. It has been shown that a single-band detection point is not adequate to classify the nonlinear tumor and head model parameters. On the other hand, dual-band and tri-band metamaterial-inspired antennas, with additional detecting points, create a continuous function solution for the nonlinear problem by adding extra observation points using multiple-band excitation. The point mapping values can be used to enhance the tumor detection capability. Two-point mapping showed a consistent trend between the S11 value order and the tumor size, while three-point mapping can also be used to demonstrate the correlation between the S11 value order and the tumor size. This proposed multi-detection point technique can be applied to a sensor for other nonlinear property targets. Moreover, a set of antennas with different polarizations, orientations, and arrangements in a network could help to obtain the highest sensitivity and accuracy of the whole system. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis)
Show Figures

Figure 1

29 pages, 15352 KiB  
Article
Curvature-Adaptive Compact Triple-Band Metamaterial Uniplanar Compact Electromagnetic Bandgap-Based Printed Antenna for Wearable Wireless and Medical Body Area Network Applications
by Tarek Messatfa, Souad Berhab, Fouad Chebbara and Mohamed S. Soliman
Processes 2024, 12(7), 1380; https://doi.org/10.3390/pr12071380 - 2 Jul 2024
Cited by 2 | Viewed by 1426
Abstract
A novel, compact, monopole apple-shaped, triple-band metamaterial-printed wearable antenna backed by a uniplanar compact electromagnetic bandgap (UC-EBG) structure is introduced in this paper for wearable wireless and medical body area network (WBAN/MBAN) applications. A tri-band UC-EBG structure has been utilized as a ground [...] Read more.
A novel, compact, monopole apple-shaped, triple-band metamaterial-printed wearable antenna backed by a uniplanar compact electromagnetic bandgap (UC-EBG) structure is introduced in this paper for wearable wireless and medical body area network (WBAN/MBAN) applications. A tri-band UC-EBG structure has been utilized as a ground plane to minimize the impact of antenna radiation on the human body and improve antenna performance for the proposed wearable antenna. Metamaterial triangular complementary split ring resonators (TCSRRs) are incorporated into the antenna and UC-EBG structure, resulting in a compact UC-EBG-backed antenna with an overall size of 39 × 39 × 2.84 mm3 (0.41 λg × 0.41 λg × 0.029 λg). The printed textile antenna operates at 2.45 GHz for the wireless local area network (WLAN), 3.5 GHz for 5G new radio (NR), and 5.8 GHz for the industrial, scientific, and medical (ISM) bands with improved gain and high-efficiency values. Furthermore, the performance of the antenna is analyzed on the human body, where three models of curved body parts are considered: a child’s arm (worst case) with a 40 mm radius, an adult’s arm with a 60 mm radius, and an adult’s leg with a 70 mm radius. The results demonstrate that the proposed antenna is an attractive candidate for wearable healthcare and fitness monitoring devices and other WBAN/MBAN applications due to its compact size, high performance, and low SAR values. Full article
(This article belongs to the Special Issue Energy Process Systems Simulation, Modeling, Optimization and Design)
Show Figures

Figure 1

17 pages, 7307 KiB  
Article
A Multi-Frequency Low-Coupling MIMO Antenna Based on Metasurface
by Guangpu Tang, Tong Xiao, Lifeng Cao, Runsheng Cheng, Chengguo Liu, Lifeng Huang and Xin Xu
Electronics 2024, 13(11), 2146; https://doi.org/10.3390/electronics13112146 - 30 May 2024
Cited by 2 | Viewed by 1405
Abstract
In this paper, a multi-frequency MIMO antenna for 5G and Wi-Fi 6E is presented. The antenna uses a cosine-shape monopole and split-ring resonator (SRR) structure for tri-band radiation, and frequency band expansion is achieved through SRR, folded split-ring resonators (FSRR) and Archimedean spiral [...] Read more.
In this paper, a multi-frequency MIMO antenna for 5G and Wi-Fi 6E is presented. The antenna uses a cosine-shape monopole and split-ring resonator (SRR) structure for tri-band radiation, and frequency band expansion is achieved through SRR, folded split-ring resonators (FSRR) and Archimedean spiral metasurfaces for decoupling, with which a combination of surface wave and space wave decoupling is achieved. The Archimedean spiral metasurface unit can achieve space wave decoupling in the tri-band. By adopting the method of combining space wave decoupling and surface wave decoupling, the miniature antenna is achieved. The measured results closely align with the simulated results. Specifically, maintaining a reflection coefficient of −10 dB, the measured results indicate an increase in isolation of 3.5 dB, 36.47 dB, and 6.42 dB for the frequency bands of 3.45–3.55 GHz, 5.7–5.9 GHz, and 6.75–7 GHz, respectively. Additionally, the MIMO antenna demonstrates an average efficiency of approximately 89%, with an average envelope correlation coefficient (ECC) of 0.0025. Furthermore, the antenna’s peak gain increases by 4.3 dB at 3.5 GHz, 3.8 dB at 5.8 GHz, and 1.9 dB at 6.9 GHz upon integrating the metasurface. The proposed method and structure are anticipated to contribute significantly to decoupling in multi-frequency MIMO antennas. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 4886 KiB  
Article
Design of a High-Gain and Tri-Band Terahertz Microstrip Antenna Using a Polyimide Rectangular Dielectric Column Photonic Band Gap Substrate
by Gaofang Li, Chenguang Huang, Renjie Huang, Bo Tang, Jingguo Huang, Jie Tan, Nenghong Xia and Haoyang Cui
Photonics 2024, 11(4), 307; https://doi.org/10.3390/photonics11040307 - 27 Mar 2024
Cited by 8 | Viewed by 2298
Abstract
A high-gain and tri-band terahertz microstrip antenna with a photonic band gap (PBG) substrate is presented in this paper for terahertz communications. Polyimide dielectric columns are inserted into the silicon substrate to form the PBG substrate to improve the gain of the antenna. [...] Read more.
A high-gain and tri-band terahertz microstrip antenna with a photonic band gap (PBG) substrate is presented in this paper for terahertz communications. Polyimide dielectric columns are inserted into the silicon substrate to form the PBG substrate to improve the gain of the antenna. The PBG substrate and polyimide substrate constituted a multilayer substrate structure and enabled the multi-band operation of the antenna. The PBG substrate antenna achieves gains of 6.28 dB, 4.84 dB, and 7.66 dB at resonant frequencies of 0.360 THz, 0.580 THz, and 0.692 THz, respectively, outperforming the homogeneous substrate THz microstrip antenna (H antenna) by 1.18 dB, 1.74 dB, and 1.82 dB, respectively. The radiation efficiencies at three operating bands are over 93%, 92%, and 88%, respectively, which are slightly higher than that of the H antenna and greater than that of the standard multi-band antenna. Full article
(This article belongs to the Special Issue Photonic Crystals: Physics and Devices)
Show Figures

Figure 1

12 pages, 6177 KiB  
Article
A Conformal Tri-Band Antenna for Flexible Devices and Body-Centric Wireless Communications
by Wahaj Abbas Awan, Anees Abbas, Syeda Iffat Naqvi, Dalia H. Elkamchouchi, Muhammad Aslam and Niamat Hussain
Micromachines 2023, 14(10), 1842; https://doi.org/10.3390/mi14101842 - 27 Sep 2023
Cited by 18 | Viewed by 2034
Abstract
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × [...] Read more.
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × 20 × 0.254 mm3. This inventive design features a truncated corner monopole accompanied by branched stubs fed by a coplanar waveguide. The stubs, varying in length, serve as quarter-wavelength monopoles, facilitating multi-band functionality at 2.45, 3.5, and 5.8 GHz. Given the antenna’s intended applications in flexible devices and body-centric networks, the conformability of the proposed design is investigated. Furthermore, an in-depth analysis of the Specific Absorption Rate (SAR) is conducted using a four-layered human tissue model. Notably, the SAR values for the proposed geometry at 2.45, 3.5, and 5.8 GHz stand at 1.48, 1.26, and 1.1 W/kg for 1 g of tissue, and 1.52, 1.41, and 0.62 W/kg for 10 g of tissue, respectively. Remarkably, these values comfortably adhere to both FCC and European Union standards, as they remain substantially beneath the threshold values of 1.6 W/kg and 2 W/kg for 1 g and 10 g tissues, respectively. The radiation characteristics and performance of the antenna in flat and different bending configurations validate the suitability of the antenna for flexible devices and body-centric wireless communications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

19 pages, 8546 KiB  
Article
A Miniaturized Tri-Band Implantable Antenna for ISM/WMTS/Lower UWB/Wi-Fi Frequencies
by Anupma Gupta, Vipan Kumar, Shonak Bansal, Mohammed H. Alsharif, Abu Jahid and Ho-Shin Cho
Sensors 2023, 23(15), 6989; https://doi.org/10.3390/s23156989 - 7 Aug 2023
Cited by 27 | Viewed by 2580
Abstract
This study aims to design a compact antenna structure suitable for implantable devices, with a broad frequency range covering various bands such as the Industrial Scientific and Medical band (868–868.6 MHz, 902–928 MHz, 5.725–5.875 GHz), the Wireless Medical Telemetry Service (WMTS) band, a [...] Read more.
This study aims to design a compact antenna structure suitable for implantable devices, with a broad frequency range covering various bands such as the Industrial Scientific and Medical band (868–868.6 MHz, 902–928 MHz, 5.725–5.875 GHz), the Wireless Medical Telemetry Service (WMTS) band, a subset of the unlicensed 3.5–4.5 GHz ultra-wideband (UWB) that is free of interference, and various Wi-Fi spectra (3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz). The antenna supports both low and high frequencies for efficient data transfer and is compatible with various communication technologies. The antenna features an asynchronous-meandered radiator, a parasitic patch, and an open-ended square ring-shaped ground plane. The antenna is deployed deep inside the muscle layer of a rectangular phantom below the skin and fat layer at a depth of 7 mm for numerical simulation. Furthermore, the antenna is deployed in a cylindrical phantom and bent to check the suitability for different organs. A prototype of the antenna is created, and its reflection coefficient and radiation patterns are measured in fresh pork tissue. The proposed antenna is considered a suitable candidate for implantable technology compared to other designs reported in the literature. It can be observed that the proposed antenna in this study has the smallest volume (75 mm3) and widest bandwidth (181.8% for 0.86 GHz, 9.58% for 1.43 GHz, and 285.7% for the UWB subset and Wi-Fi). It also has the highest gain (−26 dBi for ISM, −14 dBi for WMTS, and −14.2 dBi for UWB subset and Wi-Fi) compared to other antennas in the literature. In addition, the SAR values for the proposed antenna are well below the safety limits prescribed by IEEE Std C95.1-1999, with SAR values of 0.409 W/Kg for 0.8 GHz, 0.534 W/Kg for 1.43 GHz, 0.529 W/Kg for 3.5 GHz, and 0.665 W/Kg for 5.5 GHz when the applied input power is 10 mW. Overall, the proposed antenna in this study demonstrates superior performance compared to existing tri-band implantable antennas in terms of size, bandwidth, gain, and SAR values. Full article
(This article belongs to the Special Issue Smart Antennas for Future Communications)
Show Figures

Figure 1

21 pages, 4523 KiB  
Article
Spiral-Resonator-Based Frequency Reconfigurable Antenna Design for Sub-6 GHz Applications
by Duygu Nazan Gençoğlan, Şule Çolak and Merih Palandöken
Appl. Sci. 2023, 13(15), 8719; https://doi.org/10.3390/app13158719 - 28 Jul 2023
Cited by 14 | Viewed by 3156
Abstract
This paper presents a novel frequency reconfigurable antenna design for sub-6 GHz applications, featuring a unique combination of antenna elements and control mechanisms. The antenna is composed of an outer split-ring resonator loaded with an inner spiral resonator, which can be adjusted through [...] Read more.
This paper presents a novel frequency reconfigurable antenna design for sub-6 GHz applications, featuring a unique combination of antenna elements and control mechanisms. The antenna is composed of an outer split-ring resonator loaded with an inner spiral resonator, which can be adjusted through the remote control of PIN diode or Single Pole Double Throw (SPDT) switches. The compact antenna, measuring 22 × 16 × 1.6 mm3, operates in broadband, or tri-band mode depending on the ON/OFF states of switches. The frequency reconfigurability is achieved using two BAR64−02V PIN diodes or two CG2415M6 SPDT switches acting as RF switches. SPDT switches are controlled remotely via Arduino unit. Additionally, the antenna demonstrates an omni-directional radiation pattern, making it suitable for wireless communication systems. Experimental results on an FR-4 substrate validate the numerical calculations, confirming the antenna’s performance and superiority over existing alternatives in terms of compactness, wide operating frequency range, and cost-effectiveness. The proposed design holds significant potential for applications in Wi-Fi (IEEE 802.11 a/n/ac), Bluetooth (5 GHz), ISM (5 GHz), 3G (UMTS), 4G (LTE), wireless backhaul (4G and 5G networks), WLAN (IEEE 802.11 a/n/ac/ax), 5G NR n1 band, and Wi-Fi access points due to its small size and easy control mechanism. The antenna can be integrated into various devices, including access points, gateways, smartphones, and IoT kits. This novel frequency reconfigurable antenna design presents a valuable contribution to the field, paving the way for further advancements in wireless communication systems. Full article
(This article belongs to the Special Issue Antenna: Design Methodology, Optimization, and Technologies)
Show Figures

Figure 1

20 pages, 8958 KiB  
Article
A Quad-Band Shared-Aperture Antenna Based on Dual-Mode Composite Quarter-Mode SIW Cavity for 5G and 6G with MIMO Capability
by Amjaad T. Altakhaineh, Saqer S. Alja’afreh, Aser M. Almatarneh, Eqab Almajali, Luae Al-Tarawneh and Jawad Yousaf
Electronics 2023, 12(11), 2480; https://doi.org/10.3390/electronics12112480 - 31 May 2023
Cited by 18 | Viewed by 2854
Abstract
This study introduces a new design for an ultra-compact shared-aperture antenna utilizing a quarter-mode substrate integrated waveguide (QMSIW) cavity. The proposed antenna operates as a 4 × 4 multi-input multi-output (MIMO) system in three 5G/6G millimeter-wave (MMw) bands, while functioning as a single [...] Read more.
This study introduces a new design for an ultra-compact shared-aperture antenna utilizing a quarter-mode substrate integrated waveguide (QMSIW) cavity. The proposed antenna operates as a 4 × 4 multi-input multi-output (MIMO) system in three 5G/6G millimeter-wave (MMw) bands, while functioning as a single element antenna for a 5.5 GHz wireless fidelity Microwave (Mw) band. The antenna comprises four QMSIW cavity resonators; each QMSIW is loaded with dual slots to produce tri-band MMw operation at 28 GHz, 38 GHz, and 0.13 THz. The four cavities are arranged to reuse the entire aperture by creating a conventional open-loop antenna that operates at a frequency of 5.5 GHz. Simulation, measurement, and co-simulation results show that the proposed antenna has a quad-band operation and exhibits favorable characteristics. The measured scattering parameters validate the simulated ones over the four bands under consideration. The lowest values of the measured total radiation efficiencies are 80%, 73%, 62%, and 72% (co-simulation) within the four covered bands, respectively. The antenna peak gains are 1.8 to 1.85 dBi, 4.0 to 4.5 dBi, 4.3 to 4.5 dBi, and 6.5 to 6.6 dBi within the covered bands. Furthermore, the design satisfies MIMO and diversity conditions (envelope correlation coefficient and branch power ratio) over frequency bands of operation. All excellent results are achieved from an ultra-compact size in terms of footprint area (0.018λ02), where λ0 represents the free space wavelength at 5.5 GHz. The antenna boasts an excellent reuse aperture utilization efficiency (RAU) of 92% and a large ratio frequency of 23, making it an ideal candidate for compact devices. With its superior performance, the proposed design is well-suited for a range ofs wireless communication systems, including mobile devices and the Internet of Things. Full article
(This article belongs to the Special Issue Advanced Antenna Design for 5G and beyond Communications)
Show Figures

Figure 1

14 pages, 8424 KiB  
Communication
MIMO 5G Smartphone Antenna with Tri-Band and Decoupled Elements
by Jianqiang Hou, Yuxuan Peng, Jiajun Huang, Zhefei Wang and Tayeb A. Denidni
Sensors 2023, 23(11), 5186; https://doi.org/10.3390/s23115186 - 30 May 2023
Cited by 3 | Viewed by 5247
Abstract
In this article, a miniaturized antenna is proposed for 4G/5G multiple input, multiple output (MIMO) applications for smartphones. The proposed antenna is composed of an inverted L-shaped antenna with decoupled elements to cover 4G (2000–2600 MHz), and a planar inverted-F antenna (PIFA) with [...] Read more.
In this article, a miniaturized antenna is proposed for 4G/5G multiple input, multiple output (MIMO) applications for smartphones. The proposed antenna is composed of an inverted L-shaped antenna with decoupled elements to cover 4G (2000–2600 MHz), and a planar inverted-F antenna (PIFA) with a J-slot to cover 5G (3400–3600 MHz and 4800–5000 MHz). Furthermore, to achieve the purposes of miniaturization and decoupling, the structure adopts a feeding stub, shorting stub, and outstanding floor, additionally adding the slot to the PIFA, to generate additional frequency bands. Due to the advantages such as multiband operation, MIMO configuration for 5G communications, high isolation, and a compact structure, the proposed antenna design is attractive for 4G/5G smartphones. The antenna array is printed on an FR4 dielectric board, measuring 140 × 70 × 0.8 mm3, with the 4G antenna located on a top 15 mm-long headroom. Full article
Show Figures

Figure 1

18 pages, 13530 KiB  
Article
A Simulation Study of Triband Low SAR Wearable Antenna
by Wazie M. Abdulkawi, Asad Masood, N. Nizam-Uddin and Mohammad Alnakhli
Micromachines 2023, 14(4), 819; https://doi.org/10.3390/mi14040819 - 5 Apr 2023
Cited by 21 | Viewed by 2929
Abstract
The proposed paper presents a flexible antenna that is capable of operating in several frequency bands, namely 2.45 GHz, 5.8 GHz, and 8 GHz. The first two frequency bands are frequently utilized in industrial, scientific, and medical (ISM) as well as wireless local [...] Read more.
The proposed paper presents a flexible antenna that is capable of operating in several frequency bands, namely 2.45 GHz, 5.8 GHz, and 8 GHz. The first two frequency bands are frequently utilized in industrial, scientific, and medical (ISM) as well as wireless local area network (WLAN) applications, whereas the third frequency band is associated with X-band applications. The antenna, with dimensions of 52 mm × 40 mm (0.79 λ × 0.61 λ), was designed using a 1.8 mm thick flexible kapton polyimide substrate with a permittivity of 3.5. Using CST Studio Suite, full-wave electromagnetic simulations were conducted, and the proposed design achieved a reflection coefficient below −10 dB for the intended frequency bands. Additionally, the proposed antenna achieves an efficiency value of up to 83% and appropriate values of gain in the desired frequency bands. In order to quantify the specific absorption rate (SAR), simulations were conducted by mounting the proposed antenna on a three-layered phantom. The SAR1g values recorded for the frequency bands of 2.45 GHz, 5.8 GHz, and 8 GHz were 0.34, 1.45, and 1.57 W/Kg respectively. These SAR values were observed to be significantly lower than the 1.6 W/Kg threshold set by the Federal Communication Commission (FCC). Moreover, the performance of the antenna was evaluated by simulating various deformation tests. Full article
(This article belongs to the Special Issue Miniaturized Wearable Antennas)
Show Figures

Figure 1

12 pages, 6908 KiB  
Communication
A Novel Tuning Fork-Shaped Tri-Band Planar Antenna for Wireless Applications
by Qiwei Li, Jinyong Fang, Jun Ding, Wen Cao, Jing Sun, Chenjiang Guo and Tao Liu
Electronics 2023, 12(5), 1081; https://doi.org/10.3390/electronics12051081 - 22 Feb 2023
Cited by 6 | Viewed by 2465
Abstract
A novel tuning fork-shaped tri-band planar antenna (NTTPA) for the LTE 2.3/3.8-GHz band, WLAN 2.4/5.2/5.8-GHz band, and WiMax 2.5/3.5/5.5-GHz band is presented in this letter. By introducing an asymmetrical turning fork-shaped patch and an inverted L-shaped patch, three notched bands can be generated [...] Read more.
A novel tuning fork-shaped tri-band planar antenna (NTTPA) for the LTE 2.3/3.8-GHz band, WLAN 2.4/5.2/5.8-GHz band, and WiMax 2.5/3.5/5.5-GHz band is presented in this letter. By introducing an asymmetrical turning fork-shaped patch and an inverted L-shaped patch, three notched bands can be generated to form a triple-band operation. The antenna is fabricated on an FR4 board and excited by an SMA connector using a microstrip line. The antenna structure is simple and has a compact size of 45 mm × 40 mm. The measured operating frequency covers 2.2–2.63, 2.73–3.8, and 5.13–6.3 GHz, and the percentage bandwidth is close to 53.3% (S11 < −9.8 dB from 2.2 to 3.8 GHz) and 20.5% (S11 < −10 dB from 5.13 to 6.3 GHz). The calculated and experimental results suggest that the proposed antenna is one of the best candidates for wireless communication systems in terms of multi operating bands, broad percentage bandwidth (BW), compactness, stable radiation pattern, easy processing, and low cost. Full article
Show Figures

Figure 1

14 pages, 6342 KiB  
Article
Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications
by Sarosh Ahmad, Hichem Boubakar, Salman Naseer, Mohammad Ehsanul Alim, Yawar Ali Sheikh, Adnan Ghaffar, Ahmed Jamal Abdullah Al-Gburi and Naser Ojaroudi Parchin
Sensors 2022, 22(20), 8012; https://doi.org/10.3390/s22208012 - 20 Oct 2022
Cited by 36 | Viewed by 5403
Abstract
A printed monopole antenna for millimeter-wave applications in the 5G frequency region is described in this research. As a result, the proposed antenna resonates in three frequency bands that are designated for 5G communication systems, including 28 GHz, 38 GHz, and 60 GHz [...] Read more.
A printed monopole antenna for millimeter-wave applications in the 5G frequency region is described in this research. As a result, the proposed antenna resonates in three frequency bands that are designated for 5G communication systems, including 28 GHz, 38 GHz, and 60 GHz (V band). For the sake of compactness, the coplanar waveguide (CPW) method is used. The overall size of the proposed tri-band antenna is 4 mm × 3 mm × 0.25 mm. Using a watch strap and human tissue, such as skin, the proposed antenna gives steady results. At 28 GHz, 38 GHz, and 60 GHz, the antenna’s gain is found to be 5.29 dB, 7.47 dB, and 9 dB, respectively. The overall simulated radiation efficiency is found to be 85% over the watch strap. Wearable devices are a great fit for the proposed tri-band antenna. The antenna prototype was built and tested in order to verify its performance. It can be observed that the simulated and measured results are in close contact. According to our comparative research, the proposed antenna is a good choice for smart 5G devices because of its small size and simple structure, as well as its high gain and radiation efficiency. Full article
(This article belongs to the Special Issue RF and IoT Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

10 pages, 3713 KiB  
Communication
A Compact MIMO Antenna with Improved Isolation for ISM, Sub-6 GHz, and WLAN Application
by Batchingis Bayarzaya, Niamat Hussain, Wahaj Abbas Awan, Md. Abu Sufian, Anees Abbas, Domin Choi, Jaemin Lee and Nam Kim
Micromachines 2022, 13(8), 1355; https://doi.org/10.3390/mi13081355 - 20 Aug 2022
Cited by 47 | Viewed by 3677
Abstract
This paper presents a compact two-element MIMO antenna with improved isolation for triple-band applications. The antenna consists of two radiating elements with the shared ground plane and a novel decoupling structure. Each antenna element has three stubs with different lengths, which work as [...] Read more.
This paper presents a compact two-element MIMO antenna with improved isolation for triple-band applications. The antenna consists of two radiating elements with the shared ground plane and a novel decoupling structure. Each antenna element has three stubs with different lengths, which work as quarter-wavelength monopoles to give a triple-band operation. The decoupling system is made by etching various slots in an inverted H-shape stub attached to two quarter-circles at its lower ends. The simulated and measured results show that the antenna operates (|S11| < −10 dB) at the key frequency bands of 2.4 GHz (2.29–2.47 GHz), 3.5 GHz (3.34–3.73 GHz), and 5.5 GHz (4.57–6.75 GHz) with a stable gain and radiation patterns. Moreover, the MIMO antenna shows good isolation characteristics. The isolation is more than 20 dB, the envelope correlation coefficient is <0.003, and diversity gain is 9.98 dB, within the frequency band of interest. Furthermore, the MIMO antenna has a compact size of 48 mm × 31 mm × 1.6 mm. These features of the proposed antenna make it a suitable candidate for I.S.M., 5G sub-6 GHz, and WLAN applications. Full article
(This article belongs to the Special Issue Microwave Antennas: From Fundamental Research to Applications)
Show Figures

Figure 1

Back to TopTop