In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Isolation and Culture of ASCs
2.4. Preparation of DLU2-NPs
2.5. Measurement of Particle Size and Zeta Potential of DLU2-NPs
2.6. Confocal Microscopy Observation of Labeled ASCs
2.7. Cytotoxicity of DLU2-NPs to ASCs
2.8. Proliferation test of ASCs Labeled with DLU2-NPs
2.9. In Vitro Fluorescence and MR Imaging of ASCs Labeled with DLU2-NPs
2.10. In Vivo Fluorescence and MR Imaging of ASCs Labeled with DLU2-NPs
2.11. Statistical Analyses
3. Results and Discussion
3.1. Properties of DLU2-NPs
3.2. ASCs labeling by DLU2-NPs
3.3. Cytotoxicity of DLU2-NPs to ASCs and the Proliferation Rate of ASCs Labeled with DLU2-NPs
3.4. In Vitro Fluorescence and MR Imaging of ASCs Labeled with DLU2-NPs
3.5. In Vivo Fluorescence and MR Imaging of Transplanted ASCs Labeled with DLU2-NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamm, C.; Westphal, B.; Kleine, H.-D.; Petzsch, M.; Kittner, C.; Klinge, H.; Schümichen, C.; Nienaber, C.A.; Freund, M.; Steinhoff, G.S. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003, 361, 45–46. [Google Scholar] [CrossRef]
- Theise, N.D.; Badve, S.; Saxena, R.; Henegariu, O.; Sell, S.; Crawford, J.M.; Krause, D.S. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 2000, 31, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Osaki, M.; Kato, T.; Okochi, H.; Ochiya, T. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J. Gastroenterol. Hepatol. 2009, 24, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Noguchi, H.; Oishi, K.; Takagi, S.; Hamaguchi, M.; Hamajima, N.; Hayashi, S. Cell transplantation of adipose tissue-derived stem cells in combination with heparin attenuated acute liver failure in mice. Cell Transplant. 2009, 18, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.B.; Fonsato, V.; Bruno, S.; Grange, C.; Gilbo, N.; Romagnoli, R.; Tetta, C.; Camussi, G. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 2013, 57, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-C.; Shi, X.-L.; Ren, H.-Z.; Yuan, X.-W.; Ding, Y.-T. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J. Gastroenterol. 2014, 20, 14884–14894. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Bi, C.-S.; Wu, R.-X.; Yin, Y.; Zhang, X.-Y.; Lan, P.-H.; Chen, F.-M. Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: In vitro and in vivo studies. Cell Tissue Res. 2016, 366, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Rustad, K.C.; Gurtner, G.C. Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle) 2012, 1, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Giunti, D.; Parodi, B.; Usai, C.; Vergani, L.; Casazza, S.; Bruzzone, S.; Mancardi, G.; Uccelli, A. Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 2012, 30, 2044–2053. [Google Scholar] [CrossRef]
- Key, J.; Leary, J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. [Google Scholar]
- Hahn, M.A.; Singh, A.K.; Sharma, P.; Brown, S.C.; Moudgil, B.M. Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem. 2011, 399, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.; Lee, J.H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 2008, 41, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Seleverstov, O.; Zabirnyk, O.; Zscharnack, M.; Bulavina, L.; Nowicki, M.; Heinrich, J.-M.; Yezhelyev, M.; Emmrich, F.; O’Regan, R.; Bader, A. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett. 2006, 6, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Stilwell, J.L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P.A.; Gray, J.W.; Alivisatos, A.P.; Che, F.F. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 2006, 6, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, J.; Wang, P.-N.; Chen, J.-Y.; Lu, Z.-J.; Lu, D.-R.; Guo, J.; Wang, C.-C.; Yang, W.-L. Time-dependent photoluminescence blue shift of the quantum dots in living cells: Effect of oxidation by singlet oxygen. J. Am. Chem. Soc. 2006, 128, 13396–13401. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-C.; Wang, F.F.; Lin, C.-F.; Chen, Y.-J.; Hung, S.-C.; Wang, Y.-J. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 2006, 27, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Commun. 2004, 314, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Han, H.-S.; Niemeyer, E.; Huang, Y.; Kamoun, W.S.; Martin, J.D.; Bhaumik, J.; Chen, Y.; Roberge, S.; Cui, C.; et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl. Acad. Sci. USA 2005, 112, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Kagami, Y.; Watanabe, M.; Oishi, K.; Miyamoto, Y.; Okamoto, Y.; Tokeshi, M.; Kaji, N.; Noguchi, H.; Ono, K.; et al. Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 2010, 31, 4094–4103. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Suzuki, K.; Kano, Y.; Yamada, T.; Kaji, N.; Ishikawa, T.; Baba, Y. Induced pluripotent stem cell labeling using quantum dots. Cell Med. 2013, 6, 83–90. [Google Scholar] [CrossRef][Green Version]
- Yukawa, H.; Baba, Y. In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal. Chem. 2017, 89, 2671–2681. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Mizufune, S.; Mamori, C.; Kagami, Y.; Oishi, K.; Kaji, N.; Okamoto, Y.; Takeshi, M.; Noguchi, H.; Baba, Y.; et al. Quantum dots for labeling adipose tissue-derived stem cells. Cell Transplant. 2009, 18, 591–599. [Google Scholar] [CrossRef]
- Trekker, J.; Leten, C.; Struys, T.; Lazenka, V.V.; Argibay, B.; Micholt, L.; Lambrichts, I.; Roy, W.V.; Lagae, L.; Himmelreich, U. Sensitive in vivo cell detection using size-optimized superparamagnetic nanoparticles. Biomaterials 2014, 35, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Kadayakkara, D.K.; Bar-Shir, A.; Gilad, A.A.; McMahon, M.T.; Bulte, J.W.M. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis. Models Mech. 2015, 8, 323–336. [Google Scholar] [CrossRef]
- Berman, S.M.C.; Walczak, P.; Bulte, J.W.M. Tracking stem cells using magnetic nanoparticles. Nanomed. Nanobiotechnol. 2011, 3, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Bulte, J.W.M. In vivo MRI cell tracking: Clinical studies. AJR Am. J. Roentgenol. 2009, 193, 314–325. [Google Scholar] [CrossRef]
- Reimer, P.; Rummeny, E.J.; Daldrup, H.E.; Balzer, T.; Tombach, B.; Berns, T.; Peters, P.E. Clinical results with Resovist: A phase 2 clinical trial. Radiology 1995, 195, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.S.; Stark, D.D.; Hahn, P.F.; Bousquet, J.C.; Introcasso, J.; Wittenberg, J.; Brady, T.J.; Ferrucci, J.T., Jr. Ferrite particles: A superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. Radiology 1987, 162, 217–222. [Google Scholar] [CrossRef]
- Ferrucci, J.T.; Stark, D.D. Iron oxide-enhanced MR imaging of the liver and spleen: Review of the first 5 years. AJR Am. J. Roentgenol. 1990, 155, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Auer, V.J.; Bucher, J.; Schremmer-Danninger, E.; Paulmurugan, R.; Maechler, P.; Reiser, M.F.; Stangl, M.J.; Berger, F. Non-invasive imaging of ferucarbotran labeled INS-1E cells and rodent islets in vitro and in transplanted diabetic rats. Curr. Pharm. Biotechnol. 2011, 12, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Koshidaka, Y.; Noguchi, H.; Oishi, K.; Saito, H.; Yukawa, H.; Kaji, N.; Ikeya, T.; Suzuki, S.; Iwata, H.; et al. Observation of positively charged magnetic nanoparticles inside HepG2 spheroids using electron microscopy. Cell Med. 2013, 5, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, Y.; Yukawa, H.; Onoshima, D.; Baba, Y. Transduction function of a magnetic nanoparticle TMADM for stem-cell imaging with quantum dots. Anal. Sci. 2017, 33, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, N.D.; Szoka, F.C., Jr.; Verkman, A.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 2003, 278, 44826–44831. [Google Scholar] [CrossRef]
Dilution factor | Lipid (mg/mL) | QDs525 (nM) | QDs605 (nM) | QDs705 (nM) | ATDM (μg/mL) | |
---|---|---|---|---|---|---|
Stock Solution | 10 | 100 | 100 | 100 | 500 | |
1 | 640 | 0.016 | 0.16 | 0.16 | 0.16 | 0.78 |
2 | 320 | 0.031 | 0.31 | 0.31 | 0.31 | 1.6 |
3 | 160 | 0.063 | 0.63 | 0.63 | 0.63 | 3.1 |
4 | 80 | 0.13 | 1.3 | 1.3 | 1.3 | 6.3 |
5 | 40 | 0.25 | 2.5 | 2.5 | 2.5 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, S.; Yukawa, H.; Yamada, K.; Murata, Y.; Jo, J.-i.; Yamamoto, M.; Sugawara-Narutaki, A.; Tabata, Y.; Baba, Y. In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. Sensors 2022, 22, 5705. https://doi.org/10.3390/s22155705
Yamada S, Yukawa H, Yamada K, Murata Y, Jo J-i, Yamamoto M, Sugawara-Narutaki A, Tabata Y, Baba Y. In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. Sensors. 2022; 22(15):5705. https://doi.org/10.3390/s22155705
Chicago/Turabian StyleYamada, Shota, Hiroshi Yukawa, Kaori Yamada, Yuki Murata, Jun-ichiro Jo, Masaya Yamamoto, Ayae Sugawara-Narutaki, Yasuhiko Tabata, and Yoshinobu Baba. 2022. "In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles" Sensors 22, no. 15: 5705. https://doi.org/10.3390/s22155705
APA StyleYamada, S., Yukawa, H., Yamada, K., Murata, Y., Jo, J.-i., Yamamoto, M., Sugawara-Narutaki, A., Tabata, Y., & Baba, Y. (2022). In Vivo Multimodal Imaging of Stem Cells Using Nanohybrid Particles Incorporating Quantum Dots and Magnetic Nanoparticles. Sensors, 22(15), 5705. https://doi.org/10.3390/s22155705