Extraction of Step-Feature Lines in Open-Pit Mines Based on UAV Point-Cloud Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Open-Pit-Mine Point-Cloud-Data Acquisition
2.2. MLS Raster Resampling
2.3. Feature-Point Detection
2.4. Step-Feature-Line Reconstruction
- (1)
- Step-control-node tracking
- (2)
- Step-feature-line fitting
2.5. Step-Feature-Line Extraction-Result-Verification Method
3. Results
3.1. UAV Point-Cloud Data
3.2. Data Preprocessing
3.3. Step-Feature-Point Detection
3.4. Step-Feature-Line Reconstruction
4. Discussion
4.1. Visual Interpretation Accuracy Evaluation
4.2. Quantitative Accuracy Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, B.; Xie, L.; Hu, H.; Zhu, Q.; Yau, E. Integration of aerial oblique imagery and terrestrial imagery for optimized 3d modeling in urban areas. ISPRS J. Photogramm. Remote Sens. 2018, 139, 119–132. [Google Scholar] [CrossRef]
- Zhou, T.; Hasheminasab, S.M.; Habib, A. Tightly-coupled camera/lidar integration for point cloud generation from gnss/ins-assisted uav mapping systems. ISPRS J. Photogramm. Remote Sens. 2021, 180, 336–356. [Google Scholar] [CrossRef]
- Huang, R.; Xu, Y.; Hoegner, L.; Stilla, U. Semantics-aided 3D change detection on construction sites using UAV-based photogrammetric point clouds. Autom. Constr. 2022, 134, 104057. [Google Scholar] [CrossRef]
- Wang, Y.; Tu, W.; Li, H. Fragmentation calculation method for blast muck piles in open-pit copper mines based on three-dimensional laser point cloud data-ScienceDirect. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102338. [Google Scholar] [CrossRef]
- Zheng, X.; He, X.; Yang, X.; Ma, H.; Yu, Z.; Ren, G.; Li, J.; Zhang, H.; Zhang, J. Terrain point cloud assisted gb-insar slope and pavement deformation differentiate method in an open-pit mines. Sensors 2020, 20, 2337. [Google Scholar] [CrossRef]
- Shi, T.; Zhong, D.; Lin, B. A new challenge: Detection of small-scale falling rocks on transportation roads in open-pit mines. Sensors 2021, 21, 3548. [Google Scholar] [CrossRef]
- Padró, J.-C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
- Altantsetseg, E.; Muraki, Y.; Matsuyama, K.; Konno, K. Feature line extraction from unorganized noisy point clouds using truncated Fourier series. Vis. Comput. 2013, 29, 617–626. [Google Scholar] [CrossRef]
- Demarsin, K.; Vanderstraeten, D.; Volodine, T.; Roose, D. Detection of closed sharp edges in point clouds using normal estimation and graph theory. Comput. Des. 2007, 39, 276–283. [Google Scholar] [CrossRef]
- Huang, J.; Menq, C.-H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points. IEEE Trans. Robot. Autom. 2001, 17, 268–279. [Google Scholar] [CrossRef]
- Rouhani, M.; Lafarge, F.; Alliez, P. Semantic Segmentation of 3D Textured Meshes for Urban Scene Analysis. ISPRS J. Photogramm. Remote Sens. 2017, 123, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Peng, R.; Dong, J.; Wang, T.; Jian, D.; Tao, W. Automated extraction of 3D vector topographic feature line from terrain point cloud. Geocarto Int. 2018, 33, 1036–1047. [Google Scholar] [CrossRef]
- Ni, H.; Lin, X.; Ning, X.; Zhang, J. Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods. Remote Sens. 2016, 8, 710. [Google Scholar] [CrossRef] [Green Version]
- Aparajithan, S.; Jie, S. Building Boundary Tracing and Regularization from Airborne Lidar Point Clouds. Photogramm. Eng. Remote Sens. 2007, 73, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Dena, B.; Ramon, C.P.J.; Javier, R.H. Segmentation-based multi-scale edge extraction to measure the persistence of features in unorganized point clouds. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Porto, Portugal, 27 February–1 March 2017. [Google Scholar]
- Alshawabkeh, Y. Linear feature extraction from point cloud using color information. Herit. Sci. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Kim, S.-K. Extraction of ridge and valley lines from unorganized points. Multimed. Tools Appl. 2013, 63, 265–279. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Chen, B.; Zai, D.; Li, J. Facet Segmentation-Based Line Segment Extraction for Large-Scale Point Clouds. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4839–4854. [Google Scholar] [CrossRef]
- Daniels, I.J.; Ha, L.K.; Ochotta, T.; Silva, C.T. Robust Smooth Feature Extraction from Point Clouds. In Proceedings of the IEEE International Conference on Shape Modeling & Applications, Minneapolis, MN, USA, 13–15 June 2007. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Wei, M.; Xie, Q.; Wang, J. Aircraft Seam Feature Extraction from 3D Raw Point Cloud via Hierarchical Multi-structure Fitting. Comput. Des. 2020, 130, 102945. [Google Scholar] [CrossRef]
- Junaid, M.; Abdullah, R.A.; Sa’Ari, R.; Ali, W.; Rehman, H.; Shah, K.S.; Sari, M. Water-saturated zone recognition using integrated 2D electrical resistivity tomography, borehole, and aerial photogrammetry in granite deposit, Malaysia. Arab. J. Geosci. 2022, 15, 1301. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Yang, D.; Peng, B.; Al-Huda, Z.; Malik, A.; Zhai, D. An overview of edge and object contour detection. Neurocomputing 2022, 488, 470–493. [Google Scholar] [CrossRef]
- Sun, R.; Lei, T.; Chen, Q.; Wang, Z.; Du, X.; Zhao, W.; Nandi, A.K. Survey of Image Edge Detection. Front. Signal Process. 2022, 2, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, Q.; Liu, J.; Liang, X.; Li, D.; Ni, C.; Liu, Y. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2018, 301, 012037. [Google Scholar] [CrossRef]
- Lee, I.-K. Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 2000, 17, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Chen, H.W.; Wu, L.S. Feature extraction of point clouds based on region clustering segmentation. Multimed. Tools Appl. 2020, 79, 11861–11889. [Google Scholar] [CrossRef]
- Sevilla, R.S.; Fernández-Méndez, S.; Huerta, A. NURBS-Enhanced Finite Element Method (NEFEM). Arch. Comput. Methods Eng. 2011, 18, 441. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.J.; Evans, J.A.; Reali, A. Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 2014, 272, 290–320. [Google Scholar] [CrossRef]
- Zhou, K.; Tang, J. Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation. J. Vib. Acoust. Trans. ASME 2015, 137, 061008. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Cheng, J.; Chen, B.; Jia, F.; Chen, Z.; Li, J. Line segment extraction for large scale unorganized point clouds. ISPRS J. Photogramm. Remote Sens. 2015, 102, 172–183. [Google Scholar] [CrossRef]
- Heipke, C.; Mayer, H.; Wiedemann, C.; Jamet, O. Evaluation of automatic road extraction. Int. Arch. Photogramm. Remote Sens. 1997, 32, 151–160. [Google Scholar]
- Rutzinger, M.H.; Fle, B.; Kringer, K. Accuracy of automatically extracted geomorphological break lines from airborne lidar curvature images. Geogr. Ann. 2012, 94, 33–42. [Google Scholar] [CrossRef]
- Pauly, M.; Keiser, R.; Gross, M. Multi-Scale Feature Extraction on Point-Sampled Surfaces; Blackwell Publishing, Inc.: Hoboken, NJ, USA, 2003; Volume 22, pp. 281–289. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.-C.; Fu, Y.-W.; Cao, W.; Zhao, Z.-G. Extraction method of open-pit mining cars based on UAV point cloud data. J. Northeast. Univ. Nat. Sci. Ed. 2021, 42, 842–848, 863. [Google Scholar] [CrossRef]
- Wang, Z.; An, S.Y.; Zou, J. Extraction of step lines from open-pit point cloud data. J. Northeast. Univ. Nat. Sci. Ed. 2021, 42, 1323–1328. [Google Scholar] [CrossRef]
Aerial-Survey Equipment | Parameter | Value |
---|---|---|
UAV | Maximum takeoff weight | 1391 g |
Flight time | Approximately 30 min | |
Hovering accuracy | Vertical: ±0.1 m; horizontal: ±0.1 m | |
Maximum horizontal flight speed | 50 km/h (positioning mode), 58 km/h (attitude mode) | |
Satellite positioning module | GPS+BeiDou+Galileo (Asia region) | |
GPS+GLONASS+Galileo (other areas) | ||
Maximum operating area in a single flight | Approximately 1 km2 | |
Maximum flight altitude | 600 m | |
Camera | Pixel | 20 million effective pixels (20.48 million total pixels) |
Image sensor | 1-inch CMOS | |
Lens | FOV: 84°, 8.8 mm/24 mm | |
(35 mm-format equivalent) | ||
Aperture f/2.8–f/11 with autofocus | ||
(focus distance: 1 m–∞) | ||
Maximum photo resolution | 5472 × 3078 (16:9) | |
4864 × 3648 (4:3) | ||
5472 × 3648 (3:2) | ||
Image format | JPEG |
Aerial-Survey Parameters | Value |
---|---|
Heading-overlap rate | 70% |
Bypass-overlap rate | 70% |
Image resolution | 4864 × 3648 |
Ground sampling distance (GSD) | 2.79 cm/pixel |
Tilt angle Flight speed (average) | −45° 6.1 m/s |
Flight altitude (average) | 50 m |
Parameters | Values |
---|---|
Number of point clouds | 1,532,489 |
Point-cloud density (pts/m2) | 1.92 |
Average point distance (m) | 0.4063 |
Scope (m × m) | 891 × 1179 |
Elevation (m) | −25–186 |
Method | TP | FP | FN | α | β | γ |
---|---|---|---|---|---|---|
EGED-CS | 19,097 | 1832 | 2042 | 90.34% | 91.25% | 83.14% |
AGPN | 16,934 | 2497 | 4205 | 80.11% | 87.23% | 71.70% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Wang, H.; Cao, W.; Fu, Y.; Fu, Y.; He, L.; Bao, N. Extraction of Step-Feature Lines in Open-Pit Mines Based on UAV Point-Cloud Data. Sensors 2022, 22, 5706. https://doi.org/10.3390/s22155706
Mao Y, Wang H, Cao W, Fu Y, Fu Y, He L, Bao N. Extraction of Step-Feature Lines in Open-Pit Mines Based on UAV Point-Cloud Data. Sensors. 2022; 22(15):5706. https://doi.org/10.3390/s22155706
Chicago/Turabian StyleMao, Yachun, Hui Wang, Wang Cao, Yuwen Fu, Yanhua Fu, Liming He, and Nisha Bao. 2022. "Extraction of Step-Feature Lines in Open-Pit Mines Based on UAV Point-Cloud Data" Sensors 22, no. 15: 5706. https://doi.org/10.3390/s22155706
APA StyleMao, Y., Wang, H., Cao, W., Fu, Y., Fu, Y., He, L., & Bao, N. (2022). Extraction of Step-Feature Lines in Open-Pit Mines Based on UAV Point-Cloud Data. Sensors, 22(15), 5706. https://doi.org/10.3390/s22155706