# Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Materials and Methods

#### 3.1. Experiments

#### 3.2. Database

#### 3.3. Training, Validation, and Test Dataset

#### 3.4. Autoencoder

#### 3.5. Adversarial Autoencoder

#### 3.6. Adversarial Autoencoder Training

#### 3.7. Latent Space Evaluation

#### 3.8. Adversarial Autoencoder Hyperparameters

#### 3.9. Latent Space Distance

#### 3.10. Latent Space Accuracy

## 4. Multi-Armed Bandit Problem

#### 4.1. Boltzmann

#### Upper Confidence Bound (UCB)

#### 4.2. Sibling Kalman Filter

#### 4.2.1. Innovative Upper Confidence Bound (IUCB)

#### 4.2.2. Thomson Sampling (TS)

#### 4.3. Agent Models

#### 4.4. Model Evaluation

## 5. Results

#### 5.1. Latent Space

#### 5.2. Multi-Armed Bandit Problem

## 6. Discussion

## 7. Limitations

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

VR | Virtual Reality |

HMD | Head-Mounted Display |

RL | Reinforcement Learning |

DDA | Dynamic Difficulty Adjustment |

MAB | Multi-Armed Bandits |

AAE | Adversarial Autoencoder |

UAAE | Unsupervised Adversarial Autoencoder |

SSAAE | Semi-Supervised Adversarial Autoencoder |

UCB | Upper Confidence Bound |

IUCB | Innovative Upper Confidence Bound |

TS | Thomson Sampling |

## Appendix A

Algorithm A1: MAB Algorithm—Boltzmann |

Parameter:$T=60,K=6,{Q}_{0},\alpha ,\tau ,c$Initialization: Set $\widehat{\mathbf{\mu}}\left(0\right):={Q}_{0}$, $\mathit{N}\left(0\right):=0$1: for $t=0,1,\cdots ,T$:2: if Boltzmann:4: else if Boltzmann UCB:5: $k\leftarrow $ Softmax choice with UCB vector ($\widehat{\mathbf{\mu}}\left(t\right),\tau $) with Equations (16) and (18) 6: ${R}_{k}\left(t\right)\leftarrow $ Bandits (k) 7: ${\widehat{\mu}}_{k}(t+1)\leftarrow $ Update rule - Learning rate (${\widehat{\mu}}_{k}\left(t\right),{R}_{k}\left(t\right),\alpha $) with Equation (17) |

Algorithm A2: MAB Algorithm—Sibling Kalman Filter |

Parameter:$T=60,K=6,{Q}_{0},\tau ,c,{\sigma}_{\xi}^{2},{\sigma}_{\u03f5}^{2}$Initialization: Set $\widehat{\mathbf{\mu}}\left(0\right):={Q}_{0}$, ${\widehat{\mathbf{\sigma}}}^{2}\left(0\right),\mathit{N}\left(0\right):=0$1: for $t=0,1,\cdots ,T$:2: if Sibling Kalman Filter :4: else if Sibling Kalman Filter IUCB:5: $k\leftarrow $ Softmax choice with IUCB vector ($\widehat{\mathbf{\mu}}\left(t\right),\tau ,c$) with Equations (16) and (24) 6: else if Sibling Kalman Filter TS:7: $k\leftarrow $ Softmax choice on TS ($\widehat{\mathbf{\mu}}\left(t\right),\tau $) with Equation (25) 8: ${R}_{k}\left(t\right)\leftarrow $ Bandits(j) |

## References

- Perez-Marcos, D.; Solazzi, M.; Steptoe, W.; Oyekoya, O.; Frisoli, A.; Weyrich, T.; Steed, A.; Tecchia, F.; Slater, M.; Sanchez-Vives, M.V. A Fully Immersive Set-Up for Remote Interaction and Neurorehabilitation Based on Virtual Body Ownership. Front. Neurol.
**2012**, 3, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Holden, M.K.; Dyar, T.A.; Dayan-Cimadoro, L. Telerehabilitation Using a Virtual Environment Improves Upper Extremity Function in Patients With Stroke. IEEE Trans. Neural Syst. Rehabil. Eng.
**2007**, 15, 36–42. [Google Scholar] [CrossRef] [PubMed] - Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med. Devices
**2018**, 15, 107–117. [Google Scholar] [CrossRef] [PubMed] - Iosa, M.; Morone, G.; Fusco, A.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; De Angelis, D.; Pratesi, L.; Paolucci, S. Seven Capital Devices for the Future of Stroke Rehabilitation. Stroke Res. Treat.
**2012**, 2012, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Levin, M.F.; Weiss, P.L.; Keshner, E.A. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Phys. Ther.
**2015**, 95, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Weiss, P.L.; Rand, D.; Katz, N.; Kizony, R. Video capture virtual reality as a flexible and effective rehabilitation tool. J. Neuroeng. Rehabil.
**2004**, 1, 12. [Google Scholar] [CrossRef] [Green Version] - Mihelj, M.; Novak, D.; Milavec, M.; Ziherl, J.; Olenšek, A.; Munih, M. Virtual Rehabilitation Environment Using Principles of Intrinsic Motivation and Game Design. Presence Teleoperators Virtual Environ.
**2012**, 21, 1–15. [Google Scholar] [CrossRef] - Kim, W.S.; Cho, S.; Ku, J.; Kim, Y.; Lee, K.; Hwang, H.J.; Paik, N.J. Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J. Clin. Med.
**2020**, 9, 3369. [Google Scholar] [CrossRef] - Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci.
**2009**, 364, 3549–3557. [Google Scholar] [CrossRef] [Green Version] - Pinto, J.F.; Carvalho, H.R.; Chambel, G.R.R.; Ramiro, J.; Goncalves, A. Adaptive gameplay and difficulty adjustment in a gamified upper-limb rehabilitation. In Proceedings of the 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH), Vienna, Austria, 16–18 May 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Sekhavat, Y.A. MPRL: Multiple-Periodic Reinforcement Learning for difficulty adjustment in rehabilitation games. In Proceedings of the 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), Perth, Australia, 2–4 April 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Barrett, N.; Swain, I.; Gatzidis, C.; Mecheraoui, C. The use and effect of video game design theory in the creation of game-based systems for upper limb stroke rehabilitation. J. Rehabil. Assist. Technol. Eng.
**2016**, 3, 205566831664364. [Google Scholar] [CrossRef] [Green Version] - Jost, T.A.; Nelson, B.; Rylander, J. Quantitative analysis of the Oculus Rift S in controlled movement. Disabil. Rehabil. Assist. Technol.
**2021**, 16, 632–636. [Google Scholar] [CrossRef] [PubMed] - Monica, R.; Aleotti, J. Evaluation of the Oculus Rift S tracking system in room scale virtual reality. Virtual Real.
**2022**. [Google Scholar] [CrossRef] - Csikszentmihalyi, M.; Csikzentmihaly, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990; Volume 1990. [Google Scholar]
- Andrade, G.; Ramalho, G.; Gomes, A.; Corruble, V. Dynamic Game Balancing: An Evaluation of User Satisfaction. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Marina del Rey, CA, USA, 20–23 June 2006; Volume 2, pp. 3–8. [Google Scholar]
- Tan, C.H.; Tan, K.C.; Tay, A. Dynamic Game Difficulty Scaling Using Adaptive Behavior-Based AI. IEEE Trans. Comput. Intell. Games
**2011**, 3, 289–301. [Google Scholar] [CrossRef] - Hunicke, R.; Chapman, V. AI for Dynamic Difficulty Adjustment in Games; Northwestern University: San Jose, CA, USA, 2004; Volume 2. [Google Scholar]
- Cameirão, M.S.; Badia, S.B.I.; Oller, E.D.; Verschure, P.F.M.J. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: Methodology, design, psychometrics, usability and validation. J. Neuroeng. Rehabil.
**2010**, 7, 48. [Google Scholar] [CrossRef] [Green Version] - Wilms, I. Using artificial intelligence to control and adapt level of difficulty in computer-based, cognitive therapy—An explorative study. J. Cyberther. Rehabil.
**2011**, 4, 387–397. [Google Scholar] - Pirovano, M.; Mainetti, R.; Baud-Bovy, G.; Lanzi, P.L.; Borghese, N.A. Self-adaptive games for rehabilitation at home. In Proceedings of the 2012 IEEE Conference on Computational Intelligence and Games (CIG), Granada, Spain, 11–14 September 2012; pp. 179–186. [Google Scholar] [CrossRef] [Green Version]
- Andrade, K.d.O.; Pasqual, T.B.; Caurin, G.A.P.; Crocomo, M.K. Dynamic difficulty adjustment with Evolutionary Algorithm in games for rehabilitation robotics. In Proceedings of the 2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH), Orlando, FL, USA, 11–13 May 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Andrade, K.O.; Joaquim, R.C.; Caurin, G.A.P.; Crocomo, M.K. Evolutionary Algorithms for a Better Gaming Experience in Rehabilitation Robotics. Comput. Entertain.
**2018**, 16, 1–15. [Google Scholar] [CrossRef] - Hernandez, V.; Kulić, D.; Venture, G. Adversarial autoencoder for visualization and classification of human activity: Application to a low-cost commercial force plate. J. Biomech.
**2020**, 103, 109684. [Google Scholar] [CrossRef] - Boudreault, M.; Bouchard, B.; Bouchard, K.; Gaboury, S. Maximizing Player Engagement in a Global Warming Sensitization Video Game Through Reinforcement Learning. In Proceedings of the 4th EAI International Conference on Smart Objects and Technologies for Social Good, Bologna, Italy, 28–30 November 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 196–201. [Google Scholar] [CrossRef]
- Wertz, R.; Katz, R. Outcomes of computer-provided treatment for aphasia. Aphasiology
**2004**, 18, 229–244. [Google Scholar] [CrossRef] - Sturm, W.; Willmes, K.; Orgass, B.; Hartje, W. Do Specific Attention Deficits Need Specific Training? Neuropsychol. Rehabil.
**1997**, 7, 81–103. [Google Scholar] [CrossRef] - Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao, J.; Jurafsky, D. Deep Reinforcement Learning for Dialogue Generation. arXiv
**2016**, arXiv:1606.01541. [Google Scholar] - Vatavu, R.D.; Anthony, L.; Wobbrock, J.O. Gestures as point clouds: A $P recognizer for user interface prototypes. In Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI’12, Santa Monica, CA, USA, 22–26 October 2012; p. 273. [Google Scholar] [CrossRef]
- Butt, A.H.; Rovini, E.; Esposito, D.; Rossi, G.; Maremmani, C.; Cavallo, F. Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale. Int. J. Distrib. Sens. Netw.
**2017**, 13, 1550147717707417. [Google Scholar] [CrossRef] [Green Version] - Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv
**2015**, arXiv:1511.05644. [Google Scholar] [CrossRef] - Doersch, C. Tutorial on variational autoencoders. arXiv
**2016**, arXiv:1606.05908. [Google Scholar] - Loussaief, S.; Abdelkrim, A. Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms. Int. J. Adv. Comput. Sci. Appl.
**2018**, 9, 252–266. [Google Scholar] [CrossRef] - Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
**2016**, arXiv:1603.04467. [Google Scholar] - Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning Series; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Slivkins, A. Introduction to Multi-Armed Bandits. arXiv
**2022**, arXiv:1904.07272. [Google Scholar] - Besbes, O.; Gur, Y.; Zeevi, A. Optimal Exploration–Exploitation in a Multi-armed Bandit Problem with Non-stationary Rewards. Stoch. Syst.
**2019**, 9, 319–337. [Google Scholar] [CrossRef] - Burtini, G.; Loeppky, J.; Lawrence, R. A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit. arXiv
**2015**, arXiv:1510.00757. [Google Scholar] - Garivier, A.; Moulines, E. On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems. arXiv
**2008**, arXiv:0805.3415. [Google Scholar] - Speekenbrink, M.; Konstantinidis, E. Uncertainty and exploration in a restless bandit problem. Top. Cogn. Sci.
**2015**, 7, 351–367. [Google Scholar] [CrossRef] [Green Version] - Granmo, O.C.; Berg, S. Solving Non-Stationary Bandit Problems by Random Sampling from Sibling Kalman Filters. In Proceedings of the 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Cordoba, Spain, 1–4 June 2010; pp. 199–208. [Google Scholar] [CrossRef] [Green Version]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng.
**1960**, 82, 35–45. [Google Scholar] [CrossRef] [Green Version] - Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng.
**1961**, 83, 95–108. [Google Scholar] [CrossRef] - Thompson, W.R. On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples. Biometrika
**1933**, 25, 285–294. [Google Scholar] [CrossRef] - Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis.
**2015**, 7, 953–960. [Google Scholar] [CrossRef]

**Figure 1.**Project Overview. The adversarial autoencoder (AAE) is trained by considering a regularization component to create a set of six Gaussian distributions in a latent space. The trained AAE is then fed with a new sample (with Triangle as an example) and represented in the latent space (red cross). Finally, a distance metric is computed between a target (green centroid) and used as a reward for the MAB algorithm.

**Figure 2.**(

**a**) Example of each movement recorded with the VR wireless controller. (

**b**) Example of artificial data created for the movements “Cube”. A total of 20 movements are created based on the horizontal (Ratio X), vertical stretch (Ratio Y), and rotation factors (

**c**).

**Figure 3.**Semi-supervised adversarial autoencoder architecture with

**z**representing the latent space and

**l**as the label representing the one-hot vector. The unsupervised adversarial autoencoder will just consist of removing the input

**l**.

**Figure 4.**UAAE latent space (

**left**) and SAAE latent space (

**right**) representation with their corresponding gradient information regarding the “augmented parameters” values for horizontal stretch (

**top**), vertical stretch (

**middle**), and rotation (

**bottom**).

**Figure 5.**MAB Heatmap showing the results for UAAE (

**a**) and for SSAAE (

**b**) at iterations 5, 10, 30, and 60 for Boltzmann UCB (left) and Sibling Kalman Filter with Thomson Sampling (right) for each database (X, Y, R, XY, XR, YR, XYR).

**Figure 6.**MAB results for UAAE (

**a**) and for SSAAE (

**b**) for the Sibling Kalman Filter with Thomson Sampling for all iterations on one artificial test dataset from the database XYR. The colored area represents the uncertainty ${\widehat{\sigma}}_{k}{\left(t\right)}^{2}$ about the expected reward ${\widehat{\mu}}_{k}$.

**Table 1.**Parameters considered for the creation of the various artificial databases.

**X**represents the range of factors for the vertical stretch,

**Y**represents the range of factors for the horizontal stretch, and

**R**represents the range of factors for the rotation. Each database contained 20 artificial datasets. Each dataset contained 60 matrices for each label, thus 360 matrices in total.

Database | X | Y | R |
---|---|---|---|

${\mathit{D}}_{\mathit{x}}^{{}^{\prime}}$ | $10\ge $${p}_{h}$$\ge 50$ | $90\ge $${p}_{v}$$\ge 100$ | $-5\ge $$\theta $$\ge 5$ |

${\mathit{D}}_{\mathit{y}}^{{}^{\prime}}$ | $90\ge $${p}_{h}$$\ge 100$ | $10\ge $${p}_{v}$$\ge 50$ | $-5\ge $$\theta $$\ge 5$ |

${\mathit{D}}_{\mathit{r}}^{{}^{\prime}}$ | $90\ge $${p}_{h}$$\ge 100$ | $90\ge $${p}_{v}$$\ge 100$ | $-45\ge $$\theta $$\ge 45$ |

${\mathit{D}}_{\mathit{xy}}^{{}^{\prime}}$ | $10\ge $${p}_{h}$$\ge 50$ | $10\ge $${p}_{v}$$\ge 50$ | $-5\ge $$\theta $$\ge 5$ |

${\mathit{D}}_{\mathit{xr}}^{{}^{\prime}}$ | $10\ge $${p}_{h}$$\ge 50$ | $90\ge $${p}_{v}$$\ge 100$ | $-45\ge $$\theta $$\ge 45$ |

${\mathit{D}}_{\mathit{yr}}^{{}^{\prime}}$ | $90\ge $${p}_{h}$$\ge 100$ | $10\ge $${p}_{v}$$\ge 50$ | $-45\ge $$\theta $$\ge 45$ |

${\mathit{D}}_{\mathit{xyr}}^{{}^{\prime}}$ | $10\ge $${p}_{h}$$\ge 50$ | $10\ge $${p}_{v}$$\ge 50$ | $-45\ge $$\theta $$\ge 45$ |

Hidden Layers | Dense Size | Autoencoder Activation | Discriminator Activation | Learning Rate | Dropout Rate |
---|---|---|---|---|---|

4, 8, 16, 32, | Sigmoid, ReLU | Sigmoid | 0.01, 0.005, 0.001, | 0, 0.1, 0.2, | |

2, 3 | 64, 128, 256, 512 | Tanh | ReLU | 0.0005, 0.0001 | 0.3, 0.4 |

Model | Update Rule | Selection Rule | Parameters |
---|---|---|---|

Boltzmann | Learning rate | softmax choice: Equation (16) | optimistic Q: ${Q}_{0}$ learning rate: $\alpha $ temperature: $\tau $ |

Boltzmann UCB | Learning rate | softmax choice with UCB vector: Equations (16) and (18) | optimistic Q: ${Q}_{0}$ learning rate: $\alpha $ confidence level: c temperature: $\tau $ |

Sibling Kalman Filter | Kalman gain: Equation (22) | softmax choice: Equation (16) | optimistic Q: ${Q}_{0}$ innovative variance: ${\sigma}_{\xi}^{2}$ observation variance: ${\sigma}_{\u03f5}^{2}$ temperature: $\tau $ |

Sibling Kalman Filter IUCB | Kalman gain: Equation (22) | softmax choice with IUCB vector: Equations (16) and (24) | optimistic Q: ${Q}_{0}$ innovative variance: ${\sigma}_{\xi}^{2}$ observation variance: ${\sigma}_{\u03f5}^{2}$ temperature: $\tau $ confidence level: c |

Sibling Kalman Filter TS | Kalman gain: Equation (22) | softmax choice on TS on Normal distribution: Equation (25) | optimistic Q: ${Q}_{0}$ innovative variance: ${\sigma}_{\xi}^{2}$ observation variance: ${\sigma}_{\u03f5}^{2}$ temperature: $\tau $ |

Model | Parameters List |
---|---|

Boltzmann | ${Q}_{0}$ = [$\mathbf{5}$] |

$\alpha $ = [$0.05,0.1,0.2,0.5,\mathbf{1.0}$] | |

$\tau $ = [$\mathbf{1},2,3$] | |

Boltzmann UCB | ${Q}_{0}$ = [$\mathbf{5}$] |

$\alpha $ = [$0.05,0.1,0.2,0.5,\mathbf{1.0}$] | |

c = [$1,\mathbf{2},3$] | |

$\tau $ = [$\mathbf{1},2,3$] | |

Sibling Kalman Filter | ${Q}_{0}$ = [$\mathbf{5}$] |

${\sigma}_{\xi}^{2}$ = [$0.01,0.05,0.1,0.2,0.5,1,\mathbf{2}$] | |

${\sigma}_{\u03f5}^{2}$ = [$0.01,0.05,0.1,\mathbf{0.5},1$] | |

$\tau $ = [$\mathbf{1},2,3$] | |

Sibling Kalman Filter IUCB | ${Q}_{0}$ = [$\mathbf{5}$] |

${\sigma}_{\xi}^{2}$ = [$0.01,\mathbf{0.05},0.1,0.2,0.5,1,2$] | |

${\sigma}_{\u03f5}^{2}$ = [$0.01,\mathbf{0.05},0.1,0.5,1$] | |

$\tau $ = [$1,2,\mathbf{3},4$] | |

c = [$\mathbf{1},2,3,4$] | |

Sibling Kalman Filter TS | ${Q}_{0}$ = [$\mathbf{5}$] |

${\sigma}_{\xi}^{2}$ = [$\mathbf{0.01},0.05,0.1,0.2,0.5,1,2$] | |

${\sigma}_{\u03f5}^{2}$ = [$\mathbf{0.01},0.05,0.1,0.5,1$] | |

$\tau $ = [$\mathbf{1},2,3,4$] |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kamikokuryo, K.; Haga, T.; Venture, G.; Hernandez, V.
Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement. *Sensors* **2022**, *22*, 4499.
https://doi.org/10.3390/s22124499

**AMA Style**

Kamikokuryo K, Haga T, Venture G, Hernandez V.
Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement. *Sensors*. 2022; 22(12):4499.
https://doi.org/10.3390/s22124499

**Chicago/Turabian Style**

Kamikokuryo, Kenta, Takumi Haga, Gentiane Venture, and Vincent Hernandez.
2022. "Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement" *Sensors* 22, no. 12: 4499.
https://doi.org/10.3390/s22124499