Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,363)

Search Parameters:
Keywords = immersive virtual reality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 574 KiB  
Article
Implementation and Evaluation of a VR/AR-Based Assistive Technology for Dyslexic Learners: An Exploratory Case Study
by María Lozano-Álvarez, Sonia Rodríguez-Cano, Vanesa Delgado-Benito and Miguel Ángel García-Delgado
Societies 2025, 15(8), 215; https://doi.org/10.3390/soc15080215 (registering DOI) - 4 Aug 2025
Abstract
This exploratory case study investigates the implementation and educational impact of a Virtual Reality (VR)- and Augmented Reality (AR)-based assistive technology developed to support learners with dyslexia. The intervention, delivered via mobile devices and VR headsets, incorporated gamified and interactive content aimed at [...] Read more.
This exploratory case study investigates the implementation and educational impact of a Virtual Reality (VR)- and Augmented Reality (AR)-based assistive technology developed to support learners with dyslexia. The intervention, delivered via mobile devices and VR headsets, incorporated gamified and interactive content aimed at enhancing cognitive skills such as attention, inhibition, narrative memory, and phonological awareness. Two in-depth case studies were conducted with primary school students formally diagnosed with dyslexia. Cognitive performance was assessed using the NEPSY-II neuropsychological battery, and user experience was evaluated using the Technology Acceptance Model (TAM). The results showed positive trends in executive function and language-related skills, as well as high motivation and satisfaction. While these findings suggest promising benefits of immersive educational technologies in dyslexia intervention, conclusions regarding efficacy cannot be drawn due to the limited sample size. Further research with larger and controlled designs is needed to validate these initial observations. Full article
48 pages, 7283 KiB  
Article
Enhancing Landscape Architecture Construction Learning with Extended Reality (XR): Comparing Interactive Virtual Reality (VR) with Traditional Learning Methods
by S. Y. Andalib, Muntazar Monsur, Cade Cook, Mike Lemon, Phillip Zawarus and Leehu Loon
Educ. Sci. 2025, 15(8), 992; https://doi.org/10.3390/educsci15080992 (registering DOI) - 4 Aug 2025
Abstract
The application of extended reality (XR) in design education has grown substantially; however, empirical evidence on its educational benefits remains limited. This two-year study examines the impact of incorporating a virtual reality (VR) learning module into undergraduate landscape architecture (LA) construction courses, focusing [...] Read more.
The application of extended reality (XR) in design education has grown substantially; however, empirical evidence on its educational benefits remains limited. This two-year study examines the impact of incorporating a virtual reality (VR) learning module into undergraduate landscape architecture (LA) construction courses, focusing on brick masonry instruction. A conventional learning sequence—lecture, sketching, CAD, and 3D modeling—was supplemented with an immersive VR experience developed using Unreal Engine 5 and deployed on Meta Quest devices. In Year 1, we piloted a preliminary version of the module with landscape architecture students (n = 15), and data on implementation feasibility and student perception were collected. In Year 2, we refined the learning module and implemented it with a new cohort (n = 16) using standardized VR evaluation metrics, knowledge retention tests, and self-efficacy surveys. The findings suggest that when sequenced after a theoretical introduction, VR serves as a pedagogical bridge between abstract construction principles and physical implementation. Moreover, the VR module enhanced student engagement and self-efficacy by offering experiential learning with immediate feedback. The findings highlight the need for intentional design, institutional support, and the continued development of tactile, collaborative simulations. Full article
(This article belongs to the Special Issue Beyond Classroom Walls: Exploring Virtual Learning Environments)
Show Figures

Graphical abstract

20 pages, 980 KiB  
Article
Dynamic Decoding of VR Immersive Experience in User’s Technology-Privacy Game
by Shugang Li, Zulei Qin, Meitong Liu, Ziyi Li, Jiayi Zhang and Yanfang Wei
Systems 2025, 13(8), 638; https://doi.org/10.3390/systems13080638 (registering DOI) - 1 Aug 2025
Viewed by 170
Abstract
The formation mechanism of Virtual Reality (VR) Immersive Experience (VRIE) is notably complex; this study aimed to dynamically decode its underlying drivers by innovatively integrating Flow Theory and Privacy Calculus Theory, focusing on Perceptual-Interactive Fidelity (PIF), Consumer Willingness to Immerse in Technology (CWTI), [...] Read more.
The formation mechanism of Virtual Reality (VR) Immersive Experience (VRIE) is notably complex; this study aimed to dynamically decode its underlying drivers by innovatively integrating Flow Theory and Privacy Calculus Theory, focusing on Perceptual-Interactive Fidelity (PIF), Consumer Willingness to Immerse in Technology (CWTI), and the applicability of Loss Aversion Theory. To achieve this, we analyzed approximately 30,000 user reviews from Amazon using Latent Semantic Analysis (LSA) and regression analysis. The findings reveal that user attention’s impact on VRIE is non-linear, suggesting an optimal threshold, and confirm PIF as a central influencing mechanism; furthermore, CWTI significantly moderates users’ privacy calculus, thereby affecting VRIE, while Loss Aversion Theory showed limited explanatory power in the VR context. These results provide a deeper understanding of VR user behavior, offering significant theoretical guidance and practical implications for future VR system design, particularly in strategically balancing user cognition, PIF, privacy concerns, and individual willingness. Full article
Show Figures

Figure 1

23 pages, 2248 KiB  
Article
Autonomic and Neuroendocrine Reactivity to VR Game Exposure in Children and Adolescents with Obesity: A Factor Analytic Approach to Physiological Reactivity and Eating Behavior
by Cristiana Amalia Onita, Daniela-Viorelia Matei, Laura-Mihaela Trandafir, Diana Petrescu-Miron, Calin Corciova, Robert Fuior, Lorena-Mihaela Manole, Bogdan-Mircea Mihai, Cristina-Gena Dascalu, Monica Tarcea, Stéphane Bouchard and Veronica Mocanu
Nutrients 2025, 17(15), 2492; https://doi.org/10.3390/nu17152492 - 30 Jul 2025
Viewed by 250
Abstract
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with [...] Read more.
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with obesity (15 boys and 15 girls), aged 8 to 17 years. The VR protocol consisted of two consecutive phases: a 5 min relaxation phase using the Forest application and a 5 min stimulation phase using a cognitively engaging VR game designed to elicit social-emotional stress. Physiological responses were measured using heart rate variability (HRV) indices and salivary stress biomarkers, including cortisol and alpha amylase. Subjective stress and eating responses were assessed via visual analogue scales (VAS) administered immediately post-exposure. The Three-Factor Eating Questionnaire (TFEQ-R21C) was used to evaluate cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE). Results: The cortisol reactivity was blunted and may reflect both the attenuated HPA axis responsiveness characteristic of pediatric obesity and the moderate psychological challenge of the VR stressor used in this study. Two distinct autonomic response patterns were identified via exploratory factor analysis: (1) parasympathetic reactivity, associated with increased RMSSD and SDNN and decreased LF/HF, and (2) sympathetic activation, associated with increased heart rate and alpha-amylase levels and reduced RR intervals. Parasympathetic reactivity was correlated with lower perceived stress and anxiety, but also paradoxically with higher uncontrolled eating (UE). In contrast, sympathetic activation was associated with greater cognitive restraint (CR) and higher anxiety ratings. Conclusions: This study demonstrates that immersive VR game exposure elicits measurable autonomic and subjective stress responses in children and adolescents with obesity, and that individual differences in physiological reactivity are relevantly associated with eating behavior traits. The findings suggest that parasympathetic and sympathetic profiles may represent distinct behavioral patterns with implications for targeted intervention. Full article
(This article belongs to the Special Issue A Path Towards Personalized Smart Nutrition)
Show Figures

Figure 1

15 pages, 1527 KiB  
Systematic Review
Using Virtual Reality Simulators to Enhance Laparoscopic Cholecystectomy Skills Learning
by Irene Suh, Hong Li, Yucheng Li, Carl Nelson, Dmitry Oleynikov and Ka-Chun Siu
Appl. Sci. 2025, 15(15), 8424; https://doi.org/10.3390/app15158424 - 29 Jul 2025
Viewed by 145
Abstract
(1) Medical training is changing, especially for surgeons. Virtual reality simulation is an excellent way to train surgeons safely. Studies show that surgeons who train with simulation have demonstrated improved technical skills in fundamental surgical procedures. The purpose of this study is to [...] Read more.
(1) Medical training is changing, especially for surgeons. Virtual reality simulation is an excellent way to train surgeons safely. Studies show that surgeons who train with simulation have demonstrated improved technical skills in fundamental surgical procedures. The purpose of this study is to determine the overall impact of virtual reality training on laparoscopic cholecystectomy performance and to explore whether specific training protocols or the addition of feedback confer any advantages for future surgeons. (2) MEDLINE (PubMed), Embase (Ovid SP), Web of Science, Google Scholar, and Scopus were searched for the literature related to virtual reality training, immersive simulation, laparoscopic surgical skills training, and medical education. Study quality was assessed using the Cochrane Risk of Bias Tool and NIH Quality Assessment Tool. (3) A total of 55 full-text articles were reviewed. Meta-analysis showed that virtual reality training is an effective method for learning cholecystectomy surgical skills. (4) Conclusions: Performance, measured by objective structured assessments and time to task completion, is improved with virtual reality training compared with no additional training. Positive effects of simulation training were evident in global rating scores and operative time. Continuous feedback on movement parameters during laparoscopic cholecystectomy skills training impacts skills acquisition and long-term retention. Full article
Show Figures

Figure 1

32 pages, 6323 KiB  
Article
Design, Implementation and Evaluation of an Immersive Teleoperation Interface for Human-Centered Autonomous Driving
by Irene Bouzón, Jimena Pascual, Cayetana Costales, Aser Crespo, Covadonga Cima and David Melendi
Sensors 2025, 25(15), 4679; https://doi.org/10.3390/s25154679 - 29 Jul 2025
Viewed by 315
Abstract
As autonomous driving technologies advance, the need for human-in-the-loop systems becomes increasingly critical to ensure safety, adaptability, and public confidence. This paper presents the design and evaluation of a context-aware immersive teleoperation interface that integrates real-time simulation, virtual reality, and multimodal feedback to [...] Read more.
As autonomous driving technologies advance, the need for human-in-the-loop systems becomes increasingly critical to ensure safety, adaptability, and public confidence. This paper presents the design and evaluation of a context-aware immersive teleoperation interface that integrates real-time simulation, virtual reality, and multimodal feedback to support remote interventions in emergency scenarios. Built on a modular ROS2 architecture, the system allows seamless transition between simulated and physical platforms, enabling safe and reproducible testing. The experimental results show a high task success rate and user satisfaction, highlighting the importance of intuitive controls, gesture recognition accuracy, and low-latency feedback. Our findings contribute to the understanding of human-robot interaction (HRI) in immersive teleoperation contexts and provide insights into the role of multisensory feedback and control modalities in building trust and situational awareness for remote operators. Ultimately, this approach is intended to support the broader acceptability of autonomous driving technologies by enhancing human supervision, control, and confidence. Full article
(This article belongs to the Special Issue Human-Centred Smart Manufacturing - Industry 5.0)
Show Figures

Figure 1

24 pages, 1008 KiB  
Article
Artificial Intelligence and Immersive Technologies: Virtual Assistants in AR/VR for Special Needs Learners
by Azza Mohamed, Rouhi Faisal, Ahmed Al-Gindy and Khaled Shaalan
Computers 2025, 14(8), 306; https://doi.org/10.3390/computers14080306 - 28 Jul 2025
Viewed by 285
Abstract
This article investigates the revolutionary potential of AI-powered virtual assistants in augmented reality (AR) and virtual reality (VR) environments, concentrating primarily on their impact on special needs schooling. We investigate the complex characteristics of these virtual assistants, the influential elements affecting their development [...] Read more.
This article investigates the revolutionary potential of AI-powered virtual assistants in augmented reality (AR) and virtual reality (VR) environments, concentrating primarily on their impact on special needs schooling. We investigate the complex characteristics of these virtual assistants, the influential elements affecting their development and implementation, and the joint efforts of educational institutions and technology developers, using a rigorous quantitative approach. Our research also looks at strategic initiatives aimed at effectively integrating AI into educational practices, addressing critical issues including infrastructure, teacher preparedness, equitable access, and ethical considerations. Our findings highlight the promise of AI technology, emphasizing the ability of AI-powered virtual assistants to provide individualized, immersive learning experiences adapted to the different needs of students with special needs. Furthermore, we find strong relationships between these virtual assistants’ features and deployment tactics and their subsequent impact on educational achievements. This study contributes to the increasing conversation on harnessing cutting-edge technology to improve educational results for all learners by synthesizing current research and employing a strong methodological framework. Our analysis not only highlights the promise of AI in increasing student engagement and comprehension but also emphasizes the importance of tackling ethical and infrastructure concerns to enable responsible and fair adoption. Full article
Show Figures

Figure 1

15 pages, 717 KiB  
Article
Bridging Theory and Practice with Immersive Virtual Reality: A Study on Transfer Facilitation in VET
by David Kablitz
Educ. Sci. 2025, 15(8), 959; https://doi.org/10.3390/educsci15080959 - 25 Jul 2025
Viewed by 329
Abstract
This study explores the potential of immersive virtual reality (IVR) to enhance knowledge transfer in vocational education, particularly in bridging the gap between academic learning and practical workplace application. The focus lies on relevant predictors for actual learning transfer, namely knowledge acquisition and [...] Read more.
This study explores the potential of immersive virtual reality (IVR) to enhance knowledge transfer in vocational education, particularly in bridging the gap between academic learning and practical workplace application. The focus lies on relevant predictors for actual learning transfer, namely knowledge acquisition and the transfer-related self-efficacy. Additionally, the Cognitive Affective Model of Immersive Learning (CAMIL) is used to investigate potential predictors in IVR learning. This approach allows for empirical testing of the CAMIL and validation of its assumptions using empirical data. To address the research questions, a quasi-experimental field study was conducted with 141 retail trainees at a German vocational school. Participants were assigned to either an IVR group or a control group receiving traditional instruction. The intervention spanned four teaching sessions of 90 min each, focusing on the design of a retail sales area based on sales-promoting principles. To assess subject-related learning outcomes, a domain-specific knowledge test was developed. In addition, transfer-related self-efficacy and other relevant constructs were measured using Likert-scale questionnaires. The results show that IVR-based instruction significantly improves knowledge acquisition and transfer-related self-efficacy compared to traditional teaching methods. In terms of the CAMIL-based mechanisms, significant correlations were found between transfer-related self-efficacy and factors such as interest, motivation, academic self-efficacy, embodiment, and self-regulation. Additionally, correlations were found between knowledge acquisition and relevant predictors such as interest, motivation, and self-regulation. These findings underscore IVR’s potential to facilitate knowledge transfer in vocational school, highlighting the need for further research on its long-term effects and the actual application of learned skills in real-world settings. Full article
(This article belongs to the Special Issue Dynamic Change: Shaping the Schools of Tomorrow in the Digital Age)
Show Figures

Figure 1

30 pages, 3348 KiB  
Review
Augmented Reality and Virtual Reality in Exergaming
by Georgios Lampropoulos, Theofylaktos Anastasiadis and Juan Garzón
Future Internet 2025, 17(8), 332; https://doi.org/10.3390/fi17080332 - 25 Jul 2025
Viewed by 369
Abstract
This study presents a systematic review regarding the use of augmented reality and virtual reality in exergaming by analyzing studies published during 2010–2025. This study focuses on providing an overview of the field and on examining and synthesizing the findings of related studies [...] Read more.
This study presents a systematic review regarding the use of augmented reality and virtual reality in exergaming by analyzing studies published during 2010–2025. This study focuses on providing an overview of the field and on examining and synthesizing the findings of related studies to identify the contexts, applications, and domains in which extended reality exergames are being used and the related implications, benefits, and challenges. Based on the results, augmented reality and virtual reality exergames offer immersive, enjoyable, engaging, and personalized experiences that support physical, cognitive, and emotional well-being, while enhancing physical performance, cognitive functioning, psychological outcomes, and mental health. They promote motivation, active lifestyles, and sustainable health behaviors across diverse populations, including older adults, individuals with disabilities, and neurological groups, as well as the general adult and youth populations. Although emphasis is placed on their use in physical and cognitive rehabilitation and treatment, they also show great potential to be effectively used in different domains, including education. Among the technologies examined, the significant majority of studies focused on virtual reality exergames, a limited number of studies involved augmented reality, and only a few studies examined mixed reality, extended reality, and the metaverse. Finally, nine main topics were identified through topic modeling, providing a clear representation of the core themes within the literature. Full article
Show Figures

Figure 1

51 pages, 5654 KiB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Viewed by 385
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

26 pages, 850 KiB  
Article
Impact of Virtual Reality Immersion in Biology Classes on Habits of Mind of East Jerusalem Municipality High School Students: Examining Mediating Roles of Self-Regulation, Flow Experience, and Motivation
by Nader Neiroukh and Abedalkarim Ayyoub
Educ. Sci. 2025, 15(8), 955; https://doi.org/10.3390/educsci15080955 - 24 Jul 2025
Viewed by 282
Abstract
This quantitative study investigates the effects of virtual reality immersion on enhancing scientific habits of mind (critical and creative thinking) through the mediation of flow experience, motivation, and self-regulation in high school biology classes in East Jerusalem. The random multi-stage cluster sample consisted [...] Read more.
This quantitative study investigates the effects of virtual reality immersion on enhancing scientific habits of mind (critical and creative thinking) through the mediation of flow experience, motivation, and self-regulation in high school biology classes in East Jerusalem. The random multi-stage cluster sample consisted of 347 high school students from three schools who learned biology concepts constructively during the first semester using VR-based instruction, complying with the principles of the Cognitive Affective Model of Immersive Learning (CAMIL). The results of PLS-SEM revealed that VRI significantly affected critical and creative thinking directly and indirectly. Cases of partial and complete mediation intervened, showing the effects of mediators on enhancing habits of mind through a sequence of mediation flowing from flow experience through motivation to self-regulation, which functioned as a key intermediary factor in the relationship between virtual reality immersion and habits of mind. Based on the results of the study, the complex structure warrants further investigation. The results of the study suggest that VRI’s impact on critical and creative thinking was intensified through mediation effects. In addition, the findings confirm that flow experience and motivation played essential roles in fostering a conducive learning environment that supports cognitive skill development. The results highlight that the enhancement of self-regulation was a necessary step for the enhancement of critical and creative thinking. The study recommends integrating VRI into teaching biology to enhance students’ higher-order thinking skills. Further studies on self-regulation should explore adaptive interventions that strengthen self-regulatory strategies to maximize the cognitive benefits of virtual reality immersion. Full article
Show Figures

Figure 1

24 pages, 2599 KiB  
Article
Effects of Immersive Virtual Reality on Physical Function, Fall-Related Outcomes, Fatigue, and Quality of Life in Older Adults: A Randomized Controlled Trial
by Damla Parmak, Ender Angın and Gozde Iyigun
Healthcare 2025, 13(15), 1800; https://doi.org/10.3390/healthcare13151800 - 24 Jul 2025
Viewed by 283
Abstract
Background/Objectives: This study aimed to evaluate the impact of an immersive virtual reality (IVR) program on balance, physical fitness, risk of falling, fear of falling, fatigue, and quality of life in older adults compared with an active control group (ACG). Methods: A [...] Read more.
Background/Objectives: This study aimed to evaluate the impact of an immersive virtual reality (IVR) program on balance, physical fitness, risk of falling, fear of falling, fatigue, and quality of life in older adults compared with an active control group (ACG). Methods: A total of 44 older adults were randomly assigned to either the IVR group (n = 22) or the ACG (n = 22) for an 8-week period. The IVR group participated in 35-min immersive virtual reality sessions three times a week, whereas the ACG followed a home-based traditional exercise program. Evaluations were conducted both before and after the intervention period. Results: Compared with the ACG, the participants in the IVR group demonstrated significant improvements in balance, upper and lower extremity strength, lower extremity flexibility, fatigue levels, and specific aspects of quality of life such as autonomy and social participation. Treatment satisfaction was also higher in the IVR group. Conclusions: An 8-week immersive virtual reality intervention was effective in improving physical function, reducing fatigue, and enhancing specific domains of quality of life among older adults. Full article
Show Figures

Figure 1

19 pages, 4504 KiB  
Article
Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults
by Alina Napetschnig, Wolfgang Deiters, Klara Brixius, Michael Bertram and Christoph Vogel
Geriatrics 2025, 10(4), 99; https://doi.org/10.3390/geriatrics10040099 - 24 Jul 2025
Viewed by 332
Abstract
Background/Objectives: Aging is often accompanied by physical and cognitive decline, affecting older adults’ mobility. Virtual reality (VR) offers innovative opportunities to safely practice everyday tasks, such as street crossing. This study was designed as a feasibility and pilot study to explore acceptance, usability, [...] Read more.
Background/Objectives: Aging is often accompanied by physical and cognitive decline, affecting older adults’ mobility. Virtual reality (VR) offers innovative opportunities to safely practice everyday tasks, such as street crossing. This study was designed as a feasibility and pilot study to explore acceptance, usability, and preliminary effects of a VR-based road-crossing intervention for older adults. It investigates the use of virtual reality (VR) as an innovative training tool to support senior citizens in safely navigating everyday challenges such as crossing roads. By providing an immersive environment with realistic traffic scenarios, VR enables participants to practice in a safe and controlled setting, minimizing the risks associated with real-world road traffic. Methods: A VR training application called “Wegfest” was developed to facilitate targeted road-crossing practice. The application simulates various scenarios commonly encountered by older adults, such as crossing busy streets or waiting at traffic lights. The study applied a single-group pre-post design. Outcomes included the Timed Up and Go test (TUG), Falls Efficacy Scale-International (FES-I), and Montreal Cognitive Assessment (MoCA). Results: The development process of “Wegfest” demonstrates how a highly realistic street environment can be created for VR-based road-crossing training. Significant improvements were found in the Timed Up and Go test (p = 0.002, d = 0.784) and fall-related self-efficacy (FES-I, p = 0.005). No change was observed in cognitive function (MoCA, p = 0.56). Participants reported increased subjective safety (p < 0.001). Discussion: The development of the VR training application “Wegfest” highlights the feasibility of creating realistic virtual environments for skill development. By leveraging immersive technology, both physical and cognitive skills required for road-crossing can be effectively trained. The findings suggest that “Wegfest” has the potential to enhance the mobility and safety of older adults in road traffic through immersive experiences and targeted training interventions. Conclusions: As an innovative training tool, the VR application not only provides an engaging and enjoyable learning environment but also fosters self-confidence and independence among older adults in traffic settings. Regular training within the virtual world enables senior citizens to continuously refine their skills, ultimately improving their quality of life. Full article
Show Figures

Figure 1

19 pages, 1560 KiB  
Article
The Effects of Augmented Reality Treadmill Walking on Cognitive Function, Body Composition, Physiological Responses, and Acceptability in Older Adults: A Randomized Controlled Trial
by Wei-Yang Huang, Huei-Wen Pan and Cheng-En Wu
Brain Sci. 2025, 15(8), 781; https://doi.org/10.3390/brainsci15080781 - 23 Jul 2025
Viewed by 236
Abstract
This study aimed to investigate the effects of augmented reality (AR) treadmill walking training on cognitive function, body composition, physiological responses, and acceptance among older adults. Additionally, it analyzed the relationships between body composition, physiological responses, and the acceptance of AR technology. A [...] Read more.
This study aimed to investigate the effects of augmented reality (AR) treadmill walking training on cognitive function, body composition, physiological responses, and acceptance among older adults. Additionally, it analyzed the relationships between body composition, physiological responses, and the acceptance of AR technology. A randomized controlled trial was conducted, recruiting 60 healthy older adults, who were assigned to either the experimental group (AR treadmill walking training) or the control group (traditional treadmill walking training). The assessments included cognitive function evaluation (stride length, walking speed, and balance test), body composition (BMI, skeletal muscle mass, fat mass, and body fat percentage), and physiological responses (heart rate, calorie expenditure, exercise duration, and distance covered). Furthermore, the AR Acceptance Scale was used to assess perceived ease of use, perceived usefulness, attitudes, and behavioral intentions. The results indicated that AR treadmill walking training had significant positive effects on improving cognitive function, optimizing body composition, and enhancing physiological responses among older adults. Compared with the traditional training group, the experimental group demonstrated better performance in stride length, walking speed, and balance tests, with increased skeletal muscle mass and reduced body fat percentage. Additionally, improvements were observed in heart rate regulation, calorie expenditure, exercise duration, and distance covered, reflecting enhanced exercise tolerance. Moreover, older adults exhibited a high level of acceptance toward AR technology, particularly in terms of attitudes and behavioral intentions, as well as perceived usefulness. This study provides empirical support for the application of AR technology in promoting elderly health and suggests that future research should explore personalized adaptation strategies and long-term effects to further expand the potential value of AR technology in elderly exercise. Full article
Show Figures

Figure 1

16 pages, 1075 KiB  
Article
Promoting Domestic Fire-Safety: Virtual Drills as a Training Tool for Citizens
by Pedro Ubieto-Artur, Laura Asión-Suñer and César García-Hernández
Fire 2025, 8(8), 286; https://doi.org/10.3390/fire8080286 - 22 Jul 2025
Viewed by 419
Abstract
Promoting domestic fire safety is crucial for preventing and effectively managing risky situations. This study evaluated the effectiveness of virtual environments (VEs) in fire drills to improve citizens’ knowledge and safe behavior in domestic settings. Conducted at the Citizen School for Risk Prevention [...] Read more.
Promoting domestic fire safety is crucial for preventing and effectively managing risky situations. This study evaluated the effectiveness of virtual environments (VEs) in fire drills to improve citizens’ knowledge and safe behavior in domestic settings. Conducted at the Citizen School for Risk Prevention (CSRP) in Zaragoza (Spain), the experiment involved 20 participants facing a simulated kitchen fire using a combination of physical and virtual extinguishing equipment. A theoretical session accompanied the drills to reinforce learning. Participants were divided into two groups: one completed the drill before and after the theoretical session, while the other completed it only afterward. Performance was assessed based on the ability to extinguish, control, or lose control of the fire. Surveys administered before, immediately after, and three months after training measured knowledge retention and behavioral changes. The results indicate a significant improvement in fire safety awareness and lasting adoption of safe practices. Participants also emerged as safety advocates. This study highlights the potential of combining theoretical instruction with immersive practical training and identifies strategies for replicating this approach in other prevention schools. Full article
Show Figures

Graphical abstract

Back to TopTop