Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of Metamaterial
2.1.1. Numerical Simulation
2.1.2. Device Fabrication
2.2. Determination of Benzoic Acid Concentration in Solution Based on Metamaterials
2.2.1. Sample Preparation
2.2.2. THz Spectral Detection System
2.2.3. Extraction of THz Spectral Parameters
2.2.4. Evaluation of the Benzoic Acid Additive Detection Model
3. Results and Discussion
3.1. Spectra Analysis
3.2. Validation by FDTD Calculations
3.3. Preprocessing of THz Spectra of Benzoic Acid Aqueous Solution Based on Metamaterials
3.4. THz Wavelength Selection of Benzoic Acid Samples Based on Metamaterial
3.4.1. UVE Algorithm-Based Wavelength Variable Selection
3.4.2. CARS Algorithm-Based Wavelength Variable Selection
3.5. PLS and LS-SVM Models Establishment and Comparison for THz Spectra of Benzoic Acid Samples in Solution Based on Metamaterials
3.5.1. Establishment of PLS Model for THz Spectra of the Samples
3.5.2. Establishment of the LS-SVM Model for THz Spectra of Samples
3.5.3. Performance Comparison of PLS Model and LS-SVM Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Health and Family Planning Commission of the People’s Republic of China. National Standard for Food Safety Standard for Use of Food Additives [S]; GB 2760-2014; Standards Press: Beijing, China, 2014.
- Bilge, G.; Sezer, B.; Eseller, K.E.; Berberoglu, H.; Topcu, A.; Boyaci, I.H. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy. Food Chem. 2016, 212, 183–188. [Google Scholar] [CrossRef]
- Li, R.; Zeng, C.; Li, J.; Zhu, K.; Lin, X.; Wen, J.; Guo, H.; Weng, W.; Wang, D.; Ji, S. Characterization of the Fruits and Seeds of Alpinia Oxyphylla Miq by High-Performance Liquid Chromatography (HPLC) and near-Infrared Spectroscopy (NIRS) with Partial Least-Squares (PLS) Regression. Anal. Lett. 2020, 53, 1667–1682. [Google Scholar] [CrossRef]
- Han, R.W.; Zheng, N.; Yu, Z.N.; Wang, J.; Xu, X.M.; Qu, X.Y.; Li, S.L.; Zhang, Y.D.; Wang, J.Q. Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC-MS/MS. Food Chem. 2015, 181, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhu, K.; Liu, J.; Hu, J.; Jiang, X.; Liu, Y.; Gong, Z. Terahertz Spectroscopy Determination of Benzoic Acid Additive in Wheat Flour by Machine Learning. J. Infrared Millim. Terahertz Waves 2019, 466–475. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef]
- Qin, J.; Xie, L.; Ying, Y. Feasibility of terahertz time-domain spectroscopy to detect tetracycline hydrochloride in infant milk powder. Anal. Chem. 2014, 86, 11750–11757. [Google Scholar] [CrossRef]
- Maeng, I.; Baek, S.H.; Kim, H.Y.; Ok, G.S.; Choi, S.W.; Chun, H.S. Feasibility of using terahertz spectroscopy to detect seven different pesticides in wheat flour. J. Food Prot. 2014, 77, 2081–2087. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ye, Z.; Gao, W.; Yao, Y.; Chen, M.; Qin, J.; Ying, Y. Discrimination of transgenic rice containing the Cry l Ab protein using terahertz spectroscopy and chemometrics. Sci. Rep. 2015, 5, 1–9. [Google Scholar]
- Hu, J.; Liu, Y.; He, Y.; Sun, X.; Li, B. Optimization of quantitative detection model for benzoic acid in wheat flour based on CARS variable selection and THz spectroscopy. J. Food Meas. Charact. 2020, 14, 2549–2558. [Google Scholar] [CrossRef]
- Chen, M.; Singh, L.; Xu, N.; Singh, R.; Zhang, W.; Xie, L. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Opt. Express 2017, 25, 14089–14097. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xie, L.; Zhu, J.; Tang, L.; Singh, R.; Wang, C.; Ma, Y.; Chen, H.T.; Ying, Y. Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon 2019, 141, 247–252. [Google Scholar] [CrossRef]
- Chen, M. Detection of Tetracycline and Its Degradation Products Based on Asymmetric Resonator Combined with THz Spectroscopy. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2017. (In Chinese). [Google Scholar]
- Xu, W. Agro-Product Safety Detection by Integrating Terahertz Spectroscopy, Metamaterials and Nanomaterials: Mechanisms and Methods. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2018. (In Chinese). [Google Scholar]
- Zhang, H. Study on Measurement Methods of Chinese Traditional Medicine Based on Terahertz Time-Domain Spectroscopy. Ph.D. Thesis, Xidian University, Xi’an, China, 2018. (In Chinese). [Google Scholar]
- Yang, X.J.; Li, X.J.; Liu, J.J. Error analysis of quartz glass terahertz optical parameter Measurement. Infrared Laser Eng. 2015, 44, 1828–1831. [Google Scholar]
- Zhang, X.; Chen, L.; Sun, Y.; Bai, Y.; Huang, B.; Chen, K. Determination of zinc oxide content of mineral medicine calamine using near-infrared spectroscopy based on MIV and BP-ANN algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 133–140. [Google Scholar] [CrossRef]
- Qin, J.; Xie, L.; Ying, Y. Determination of tetracycline hydrochloride by terahertz spectroscopy with PLSR model. Food Chem. 2015, 170, 415–422. [Google Scholar] [CrossRef]
- Qin, J.; Xie, L.; Ying, Y. A high-sensitivity terahertz spectroscopy technology for tetracycline hydrochloride detection using metamaterials. Food Chem. 2016, 211, 300–305. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. [Google Scholar] [CrossRef]
- Chu, Y.W.; Tang, S.S.; Ma, S.X.; Ma, Y.Y.; Hao, Z.Q.; Guo, Y.M.; Guo, L.B.; Lu, Y.F.; Zeng, X.Y. Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laser-induced breakdown spectroscopy. Opt. Express 2018, 26, 10119–10127. [Google Scholar] [CrossRef]
- Guo, W.; Gu, J.; Liu, D.; Shang, L. Peach variety identification using near-infrared diffuse reflectance spectroscopy. Comput. Electron. Agric. 2016, 123, 297–303. [Google Scholar] [CrossRef]
- Li, J.; Fan, S.; Huang, W. Assessment of multiregion local models for detection of SSC of whole peach (Amygdalus persica L.) by combining both hyperspectral imaging and wavelength optimization methods. J. Food Process Eng. 2018, 41, e12914.11. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Song, X.; Zhang, J.; Min, S. Moving window smoothing on the ensemble of competitive adaptive reweighted sampling algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Rasoolimanesh, S.M.; Sarstedt, M.; Ringle, C.M.; Ryu, K. An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. Int. J. Contemp. Hosp. Manag. 2018, 30, 514–538. [Google Scholar] [CrossRef] [Green Version]
- Asfaram, A.; Ghaedi, M.; Azqhandi, M.A.; Goudarzi, A.; Dastkhoon, M.J.R.A. Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye. RSC Adv. 2016, 6, 40502–40516. [Google Scholar] [CrossRef]
- Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. 2019, 23, 2445–2462. [Google Scholar] [CrossRef]
Preprocessing Method | PC | Rc | RMSEC | Rp | RMSEP |
---|---|---|---|---|---|
None | 9 | 0.9744 | 1.66 × 10−4 | 0.9618 | 1.21 × 10−4 |
Smoothing | 9 | 0.9729 | 1.71 × 10−4 | 0.9674 | 1.17 × 10−4 |
MSC | 10 | 0.9764 | 1.60 × 10−4 | 0.9765 | 1.19 × 10−4 |
SG + 1stD | 10 | 0.9823 | 1.39 × 10−4 | 0.9791 | 1.03 × 10−4 |
Model | Variable Selection Methods | Number of Variable | PC | Rc | RMSEC | Rp | RMSEP |
---|---|---|---|---|---|---|---|
PLS | Original data | 340 | 10 | 0.9823 | 1.39 × 10−4 | 0.9791 | 1.03 × 10−4 |
UVE | 141 | 10 | 0.9783 | 1.52 × 10−4 | 0.9197 | 1.40 × 10−4 | |
CARS | 20 | 9 | 0.9855 | 1.19 × 10−4 | 0.9757 | 1.42 × 10−4 |
Wavelength Selection Methods | No. of Variable | RBF-Kernel | Lin-Kernel | ||||
---|---|---|---|---|---|---|---|
γ, σ2 | R | RMSEP | γ | R | RMSEP | ||
Full spectrum | 340 | 3.1234 × 105, 8.8257 × 105 | 0.9896 | 1.15 × 10−5 | 0.2391 | 0.9802 | 1.60 × 10−5 |
CARS | 20 | 3.0060 × 103, 50.6610 | 0.9953 | 7.3 × 10−6 | 3.3290 × 107 | 0.9058 | 2.97 × 10−5 |
UVE | 141 | 1.5350 × 105, 307.0402 | 0.9925 | 8.414 × 10−5 | 90.8532 | 0.9844 | 1.30 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Chen, R.; Xu, Z.; Li, M.; Ma, Y.; He, Y.; Liu, Y. Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices. Sensors 2021, 21, 3238. https://doi.org/10.3390/s21093238
Hu J, Chen R, Xu Z, Li M, Ma Y, He Y, Liu Y. Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices. Sensors. 2021; 21(9):3238. https://doi.org/10.3390/s21093238
Chicago/Turabian StyleHu, Jun, Rui Chen, Zhen Xu, Maopeng Li, Yungui Ma, Yong He, and Yande Liu. 2021. "Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices" Sensors 21, no. 9: 3238. https://doi.org/10.3390/s21093238
APA StyleHu, J., Chen, R., Xu, Z., Li, M., Ma, Y., He, Y., & Liu, Y. (2021). Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices. Sensors, 21(9), 3238. https://doi.org/10.3390/s21093238