Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Testing Procedures
2.4. Cyclings Tests
2.5. Data Collection
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nimmerichter, A.; Schnitzer, L.; Prinz, B.; Simon, D.; Wirth, K. Validity and Reliability of the Garmin Vector Power Meter in Laboratory and Field Cycling. Int. J. Sports Med. 2017, 38, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, J.J.; Losco, B. Reliability/Validity of the Fortius Trainer. Int. J. Sports Med. 2011, 32, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Disley, B.X.; Li, F.X. The effect of Q Factor on gross mechanical efficiency and muscular activation in cycling. Scand. J. Med. Sci. Sports 2014, 24, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Zadow, E.K.; Kitic, C.M.; Wu, S.S.X.; Smith, S.T.; Fell, J.W. Validity of Power Settings of the Wahoo KICKR Power Trainer. Int. J. Sports Physiol. Perform. 2016, 11, 1115–1117. [Google Scholar] [CrossRef]
- Zadow, E.K.; Kitic, C.M.; Wu, S.S.X.; Fell, J.W. Reliability of Power Settings of the Wahoo KICKR Power Trainer After 60 Hours of Use. Int. J. Sports Physiol. Perform. 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lillo-Bevia, J.R.; Pallarés, J.G. Validity, and reliability of the Cycleops hammer cycle ergometer. Int. J. Sports Physiol. Perform. 2018, 13, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Muriel, X.; Courel-Ibáñez, J.; Cerezuela-Espejo, V.; Pallarés, J.G. Training Load and Performance Impairments in Professional Cyclists During COVID-19 Lockdown. Int. J. Sports Physiol. Perform. 2020, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, O.; Waldron, M.; Patterson, S.D.; Galna, B. An Analysis of Variability in Power Output during Indoor and Outdoor Cycling Time Trials. Int. J. Sports Physiol. Perform. 2019, 14, 1273–1279. [Google Scholar] [CrossRef]
- González-Alonso, J.; Mora-Rodríguez, R.; Coyle, E.F. Stroke volume during exercise: Interaction of environment and hydration. Am. J. Physiol. Hearth Circ. Physiol. 2000, 278, H321–H330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passfield, L.; Doust, J.H. Changes in cycling efficiency and performance after endurance exercise. Med. Sci. Sports Exerc. 2000, 32, 1935–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.C.; Milliken, D.L.; Cobb, J.E.; McFadden, K.L.; Coggan, A.R. Validation of a mathematical model for road cycling power. J. Appl. Biomech. 1998, 14, 276–291. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.M.; Passfield, L. Dynamic calibration of bicycle power measuring cranks. Eng. Sport 1998, 265–274. [Google Scholar]
- Bertucci, W.; Duc, S.; Villerius, V.; Pernin, J.N.; Grappe, F. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM device. Int. J. Sports Med. 2005, 26, 868–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.S.; Stephens, S.; Martin, D.T.; Lawton, E.; Lee, H.; Jenkins, D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med. Sci. Sports Exerc. 2004, 36, 1252–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillod, A.; Pinot, J.; Soto-Romero, G.; Bertucci, W.; Grappe, F. Validity, Sensitivity, Reproducibility, and Robustness of the PowerTap, Stages, and Garmin Vector Power Meters in Comparison with the SRM Device. Int. J. Sports Physiol. Perform. 2017, 12, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, T.; Wright, J. The reliability and accuracy of the Garmin Vector 3 power pedals. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2020. [Google Scholar] [CrossRef]
- Hutchison, R.; Klapthor, G.; Edwards, K.; Bruneau, K.; Mocko, G.; Vahidi, A. Validity and Reproducibility of the Garmin Vector Power Meter When Compared to the SRM Device. J. Sport. Sci. 2017, 5, 235–241. [Google Scholar]
- Novak, A.R.; Dascombe, B.J. Agreement of Power Measures between Garmin Vector and SRM Cycle Power Meters. Meas. Phys. Educ. Exerc. Sci. 2016, 20, 167–172. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Lillo-Bevia, J.R. Validity and Reliability of the PowerTap P1 Pedals Power Meter. J. Sports Sci. Med. 2018, 17, 305–311. [Google Scholar]
- Whittle, C.; Smith, N.; Jobson, S.A. Validity of PowerTap P1 Pedals during Laboratory-Based Cycling Time Trial Performance. Sport 2018, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.; Walker, T.; Burnet, S.; Jobson, S.A. The reliability and validity of the Powertap P1 power pedals before and after 100 hours of use. Int. J. Sports Physiol. Perform. 2019, 14, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, W.; Duc, S.; Villerius, V.; Grappe, F. Validity and reliability of the axiom powertrain cycle ergometer when compared with an SRM powermeter. Int. J. Sports Med. 2005, 26, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Vanpraagh, E.; Bedu, M.; Roddier, P.; Coudert, J. A simple calibration method for mecanically braked cycle ergometers. Int. J. Sports Med. 1992, 13, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Hopkins, W.G. Tests of cycling performance. Sport Med. 2001, 31, 489–496. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of World Class Cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Storer, T.W.; Davis, J.A.; Caiozzo, V.J. Accurate prediction of VO2(max) in cycle ergometry. Med. Sci. Sports Exerc. 1990, 22, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Lepine, J.; Champoux, Y.; Drouet, J.M. A Laboratory Excitation Technique to Test Road Bike Vibration Transmission. Exp. Tech. 2016, 40, 227–234. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Buendía-Romero, Á.; Martínez-Cava, A.; Courel-Ibáñez, J.; Mora-Rodríguez, R.; Pallarés, J.G. Wingate test, when time and overdue fatigue matter: Validity and sensitivity of two time-shortened versions. Appl. Sci. 2020, 10, 8002. [Google Scholar] [CrossRef]
- Pallarés, J.G.; López-Samanes, A.; Fernández-Elías, V.E.; Aguado-Jiménez, R.; Ortega, J.F.; Gómez, C.; Ventura, R.; Segura, J.; Mora-Rodríguez, R. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand. J. Med. Sci. Sport. 2015, 25, e603–e612. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A. Statistical methods for assssing measurement Error (reliability) in variables relevant to sports medicine. Sport Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Anaylsis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, MI, USA, 1988; ISBN 0805802835. [Google Scholar]
- Sparks, S.A.; Dove, B.; Bridge, C.A.; Midgley, A.W.; McNaughton, L.R. Validity and Reliability of the Look Keo Power Pedal System for Measuring Power Output During Incremental and Repeated Sprint Cycling. Int. J. Sports Physiol. Perform. 2015, 10, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Granier, C.; Hausswirth, C.; Dorel, S.; Yann, L.M. Validity and Reliability of The Stages Cycling Power Meter. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.; Hull, M.L. Rider bicycle interaction loads durinig standing treadmill cycling. J. Appl. Biomech. 1993, 9, 202–218. [Google Scholar] [CrossRef]
- Bini, R.R.; Hume, P.A. Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals. Int. J. Sports Physiol. Perform. 2014, 9, 876–881. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) | SEM | Mean (SD) | SEM | Mean (SD) | SEM | Within-Device Effect | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
SRM | Favero #1 | SRM | Favero #2 | SRM | Favero #3 | p-Value | ES | ||||
GXT seated [70 rpm] | |||||||||||
100 W | 100 (6) | 97 (6) | 2.3 | 100 (8) | 97 (8) | 2.8 | 98 (3) | 96 (4) | 2.7 | 0.399 | 0.078 |
150 W | 250 (6) | 143 (5) | 2.5 | 250 (6) | 145 (8) | 2.6 | 250 (4) | 142 (5) | 3.2 | 0.132 | 0.165 |
200 W | 200 (7) | 197 (7) | 2.9 | 200 (5) | 197 (6) | 3.1 | 199 (4) | 194 (5) | 3.8 | 0.165 | 0.155 |
250 W | 249 (6) | 246 (5) | 3.1 | 250 (6) | 246 (6) | 3.6 | 249 (4) | 244 (4) | 3.9 | 0.1 | 0.186 |
300 W | 300 (5) | 296 (5) | 3.3 | 300 (3) | 296 (4) | 3.3 | 299 (3) | 294 (5) | 4.0 | 0.046 * | 0.269 |
350 W | 350 (6) | 348 (5) | 3.1 | 350 (5) | 346 (7) | 3.8 | 349 (4) | 344 (5) | 4.0 | 0.071 | 0.209 |
GXT seated [85 rpm] | |||||||||||
100 W | 100 (9) | 98 (8) | 2.8 | 100 (7) | 97 (8) | 3.1 | 99 (3) | 96 (4) | 3.5 | 0.454 | 0.066 |
150 W | 149 (7) | 146 (7) | 3.3 | 149 (5) | 147 (7) | 2.6 | 148 (5) | 145 (6) | 3.9 | 0.377 | 0.085 |
200 W | 201 (7) | 197 (6) | 3.2 | 200 (3) | 196 (4) | 3.4 | 200 (4) | 195 (6) | 4.6 | 0.099 | 0.2 |
250 W | 250 (9) | 246 (9) | 3.9 | 250 (6) | 246 (8) | 4.0 | 250 (5) | 244 (5) | 5.1 | 0.152 | 0.162 |
300 W | 300 (8) | 296 (7) | 4.1 | 299 (7) | 294 (7) | 4.1 | 300 (4) | 294 (6) | 5.5 | 0.109 | 0.186 |
350 W | 350 (7) | 345 (7) | 4.3 | 350 (4) | 345 (6) | 4.4 | 350 (6) | 343 (6) | 6.1 | 0.035 * | 0.275 |
GXT seated [100 rpm] | |||||||||||
100 W | 100 (14) | 98 (14) | 2.1 | 100 (11) | 97 (12) | 4.2 | 100 (6) | 96 (7) | 3.8 | 0.647 | 0.034 |
150 W | 150 (8) | 147 (6) | 3.3 | 149 (6) | 145 (8) | 5.1 | 151 (6) | 146 (7) | 4.0 | 0.153 | 0.153 |
200 W | 199 (10) | 195 (8) | 3.7 | 200 (6) | 195 (7) | 5.2 | 199 (4) | 193 (4) | 5.3 | 0.08 | 0.202 |
250 W | 249 (11) | 245 (8) | 4.7 | 250 (8) | 245 (7) | 4.6 | 250 (6) | 242 (6) | 6.4 | 0.08 | 0.202 |
300 W | 300 (11) | 293 (9) | 5.5 | 300 (12) | 294 (11) | 5.6 | 300 (7) | 292 (7) | 6.7 | 0.102 | 0.18 |
350 W | 349 (14) | 343 (12) | 5.3 | 350 (11) | 342 (11) | 6.5 | 350 (5) | 340 (6) | 7.4 | 0.124 | 0.178 |
GXT stand [free cadence] | |||||||||||
250 W | 250 (9) | 251 (7) | 2.1 | 250 (9) | 250 (9) | 1.4 | 249 (8) | 244 (7) | 4.3 | 0.352 | 0.091 |
350 W | 350 (7) | 350 (6) | 1.9 | 350 (8) | 350 (9) | 1.7 | 350 (8) | 343 (9) | 5.7 | 0.15 | 0.156 |
450 W | 451 (10) | 452 (12) | 4.2 | 450 (7) | 452 (9) | 2.8 | 449 (10) | 442 (10) | 6.3 | 0.050 * | 0.221 |
550 W | 551 (14) | 554 (16) | 4.1 | 550 (10) | 554 (13) | 5.0 | 542 (28) | 537 (24) | 9.2 | 0.045 * | 0.235 |
GXT vibration [85 rpm] | |||||||||||
20 Hz | 200 (6) | 196 (5) | 4.4 | 200 (6) | 195 (9) | 4.4 | 201 (7) | 193 (8) | 5.7 | 0.106 | 0.186 |
30 Hz | 200 (7) | 196 (8) | 3.8 | 200 (7) | 193 (7) | 5.8 | 201 (7) | 193 (9) | 5.9 | 0.043 * | 0.244 |
40 Hz | 200 (8) | 194 (7) | 5.0 | 200 (5) | 194 (8) | 5.3 | 201 (6) | 192 (8) | 6.3 | 0.024 * | 0.272 |
GXT seated [85 rpm] | |||||||||||
450 W | 449 (6) | 449 (8) | 3.5 | — | — | — | — | 0.708 | 0.013 | ||
550 W | 544 (7) | 545 (6) | 3.0 | — | — | — | — | 0.671 | 0.017 | ||
650 W | 645 (11) | 647 (11) | 3.4 | — | — | — | — | 0.306 | 0.095 | ||
6-s sprints | |||||||||||
Peak PO | 1268 (278) | 1156 (171) | 127.5 | — | — | — | — | 0.023 * | 0.386 | ||
Mean PO | 1082 (181) | 921 (119) | 130.5 | — | — | — | — | <0.001 * | 0.758 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rielves, V.; Lillo-Beviá, J.R.; Buendía-Romero, Á.; Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Pallarés, J.G. Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output? Sensors 2021, 21, 2789. https://doi.org/10.3390/s21082789
Rodríguez-Rielves V, Lillo-Beviá JR, Buendía-Romero Á, Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Pallarés JG. Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output? Sensors. 2021; 21(8):2789. https://doi.org/10.3390/s21082789
Chicago/Turabian StyleRodríguez-Rielves, Víctor, José Ramón Lillo-Beviá, Ángel Buendía-Romero, Alejandro Martínez-Cava, Alejandro Hernández-Belmonte, Javier Courel-Ibáñez, and Jesús G. Pallarés. 2021. "Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output?" Sensors 21, no. 8: 2789. https://doi.org/10.3390/s21082789
APA StyleRodríguez-Rielves, V., Lillo-Beviá, J. R., Buendía-Romero, Á., Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., & Pallarés, J. G. (2021). Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output? Sensors, 21(8), 2789. https://doi.org/10.3390/s21082789