Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study
Abstract
1. Introduction
2. The Smart Rainfall System (SRS)
2.1. Satellite–Earth Link Model
2.2. The RF Front-End
- 1.
- directional coupler,
- 2.
- L-band Low Noise Amplifier (LNA),
- 3.
- L-band band pass filter, and
- 4.
- logarithmic power detector.
2.3. High Level Post-Processing
3. The Monte Scarpino Landfill and the SRS Test-Bed
3.1. The SRS Test Bed
3.2. Reference Rainfall Measurements
3.3. Estimation of
4. Experimental Results
4.1. Event of 4 July 2018
4.2. Event of 14 August 2018
4.3. Comments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ARPAL | Agenzia Regionale per la Protezione dell’Ambiente Ligure (Environmental Protection Agency of the Liguria Region) |
| CCTV | Closed-Circuit Television (Camera) |
| DVB-S | Digital Video Broadcasting Satellite |
| DVB-S2 | Digital Video Broadcasting Satellite second generation |
| GIS | Geographic Information System |
| IoT | Internet of Things |
| ITU | International Telecommunication Union |
| LNA | Low Noise Amplifier |
| LNB | Low Noise Block (down-converter) |
| SRS | Smart Rainfall System |
| WR | Weather Radar |
References
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods—A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [PubMed]
- Lanza, L.; Vuerich, E. The WMO Field Intercomparison of Rain Intensity Gauges. Atmos. Res. 2009, 94, 534–543. [Google Scholar] [CrossRef]
- Zhang, G. Weather Radar Polarimetry; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S. Algorithm Theoretical Basis Document, Version 5.2: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); Technical Report; NASA/GSFC: Greenbelt, MD, USA, 2018.
- National Center for Atmospheric Research Staff. The Climate Data Guide: CMORPH (CPC MORPHing Technique): High Resolution Precipitation (60S-60N). 2017. Available online: https://climatedataguide.ucar.edu/climate-data/cmorph-cpc-morphing-technique-high-resolution-precipitation-60s-60n (accessed on 29 December 2020).
- Maier, R.; Krebs, G.; Pichler, M.; Muschalla, D.; Gruber, G. Spatial Rainfall Variability in Urban Environments—High-Density Precipitation Measurements on a City-Scale. Water 2020, 12, 1157. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, B. Effects of Using High-Density Rain Gauge Networks and Weather Radar Data on Urban Hydrological Analyses. Water 2017, 9, 931. [Google Scholar] [CrossRef]
- Marchi, L.; Blöschl, G.; Borga, M.; Delrieu, G.; Gaumé, E.; Samuels, P.; Sempere-Torres, D.; Stancalie, G.; Szolgay, J.; Tsanis, I. Characterisation of Flash Floods Based on Analysis of Extreme European Events; EGU General Assembly: Vienna, Austria, 2009. [Google Scholar]
- Colli, M.; Cassola, F.; Martina, F.; Trovatore, E.; Delucchi, A.; Maggiolo, S.; Caviglia, D.D. Rainfall Fields Monitoring Based on Satellite Microwave Down-Links and Traditional Techniques in the City of Genoa. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6266–6280. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Workshop on Warnings of Real-Time Hazards by Using Nowcasting Technology; Sydney, Australia. 2006. Available online: https://www.wmo.int/pages/prog/amp/pwsp/Nowcasting_workshop_proceedings.html (accessed on 19 January 2021).
- Wang, Y.; De Coning, E.; Jacobs, W.; Joe, P.; Nikitina, L.; Roberts, R.; Wang, J.; Wilson, J. Guidelines for Nowcasting Techniques; Vol. WMO-No. 1198; World Meteorological Organization (WMO): Geneva, Switzerland, 2017; Available online: https://library.wmo.int/doc_num.php?explnum_id=3795 (accessed on 19 January 2021).
- Caviglia, D.; Cinquetti, P. Smart Rainfall System: Innovative Rain Monitoring at the Scarpino Landfill. AMIU Conference on Innovation for Land Management: Scarpino 3.0. 2016. Available online: https://www.amiu.genova.it/wp-content/uploads/2017/10/Monitoraggio_piogge-Caviglia-Cinquetti.pdf (accessed on 19 January 2021). (In Italian).
- Colli, M.; Stagnaro, M.; Caridi, A.; Lanza, L.G.; Randazzo, A.; Pastorino, M.; Caviglia, D.D.; Delucchi, A. A Field Assessment of a Rain Estimation System Based on Satellite-to-Earth Microwave Links. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2864–2875. [Google Scholar] [CrossRef]
- Colli, M.; Stagnaro, M.; Caridi, A.; Lanza, L.G.; Randazzo, A.; Pastorino, M.; Caviglia, D.D.; Delucchi, A. A Field Experiment of Rainfall Intensity Estimation Based on the Analysis of Satellite-to-Earth Microwave Link Attenuation. In Applications in Electronics Pervading Industry, Environment and Society—ApplePies 2018; Saponara, S., De Gloria, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–144. Available online: https://link.springer.com/chapter/10.1007/978-3-030-11973-7_17 (accessed on 19 January 2021).
- Ippolito, L. Radiowave Propagation in Satellite Communications; Springer Science+Business Media B.V.: Berlin, Germany, 1986. [Google Scholar]
- Sizun, H. Radio Wave Propagation for Telecommunication Applications; Signals and Communication Technology; Springer: Berlin, Germany, 2005. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- ITU. Specific Attenuation Model for Rain for Use in Prediction Methods; Recommendation ITU-R P.838-3; International Telecommunication Union. Available online: https://www.itu.int/rec/R-REC-P.838/en (accessed on 19 January 2021).
- Capsoni, C.; Luini, L.; Paraboni, A.; Riva, C. Stratiform and Convective Rain Discrimination Deduced From Local P(R). IEEE Tran. Antennas Propag. 2006, 54, 3566–3569. [Google Scholar] [CrossRef]
- Capsoni, C.; Luini, L.; Paraboni, A.; Riva, C.; Martellucci, A. A New Prediction Model of Rain Attenuation That Separately Accounts for Stratiform and Convective Rain. IEEE Trans. Antennas Propag. 2009, 57, 196–204. [Google Scholar] [CrossRef]
- Panagopoulos, A.D.; Arapoglou, P.D.M.; Cottis, P.G. Satellite communications at KU, KA, and V bands: Propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutor. 2004, 6, 2–14. [Google Scholar] [CrossRef]
- Crane, R.K. Propagation Handbook for Wireless Communication System Design; The Electrical Engineering and Applied Signal Processing Series; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Oguchi, T. Effects of incoherent scattering on attenuation and depolarization of millimeter and optical waves due to hydrometeors. Radio Sci. 1986, 21, 717–730. [Google Scholar] [CrossRef]
- Beasley, J.S. Modern Electronic Communication: Pearson New International Edition; Pearson: Harlow, UK, 2013. [Google Scholar]
- Caviglia, D.; Pastorino, M.; Sguerso, D.; Caridi, A.; Montecucco, C.; Federici, B.; Gragnani, G.L.; Parodi, G.; Randazzo, A. Sistema e Metodo di Monitoraggio di un Territorio. Italian Patent UIBM n. 0001412786, 19 January 2014. [Google Scholar]
- Federici, B.; Gragnani, G.L.; Parodi, G.; Randazzo, A.; Caviglia, D.; Pastorino, M.; Sguerso, D.; Caridi, A.; Montecucco, C. System and Method for Monitoring a Territory. EU Patent EP2688223B1, 6 February 2019. [Google Scholar]
- Regione Liguria. Ortofoto AGEA. 2016. Available online: https://srvcarto.regione.liguria.it/geoviewer2/pages/apps/geoportale/index.html (accessed on 16 November 2020).
- AMIU. Scarpino Landfill. 2017. Available online: https://www.amiu.genova.it/azienda/impianti/discarica-di-scarpino/ (accessed on 16 November 2020).
- Paladino, O.; Massabò, M. Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: A case study in Italy. Waste Manag. 2017, 68, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Türksat Uydu Haberleşme Kablo TV ve İşletme A.Ş. Türksat Company. Available online: http://www.turksat.com.tr/ (accessed on 28 December 2020).
- SES S.A. Astra 19.2E Coverage. Available online: https://www.ses.com/our-coverage#/explore/orbital-position/196 (accessed on 28 December 2020).
- Fencl, M.; Rieckermann, J.; Sýkora, P.; Stránský, D.; Bareš, V. Commercial microwave links instead of rain gauges: Fiction or reality? Water Sci. Technol. 2015, 71, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Roversi, G.; Alberoni, P.P.; Fornasiero, A.; Porcù, F. Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy. Atmos. Meas. Tech. 2020, 13, 5779–5797. [Google Scholar] [CrossRef]
- Zinevich, A.; Messer, H.; Alpert, P. Frontal Rainfall Observation by a Commercial Microwave Communication Network. J. Appl. Meteorol. Climatol. 2009, 48, 1317–1334. [Google Scholar] [CrossRef]
- Md. Atiqul, I. Statistical comparison of satellite-retrieved precipitation products with rain gauge observations over Bangladesh. Int. J. Remote Sens. 2018, 39, 2906–2936. [Google Scholar] [CrossRef]
- Chuancheng, Z.; Shuxia, Y.; Shiqiang, Z.; Haidong, H.; Qiudong, Z.; Shuhua, Y. Validation of the Accuracy of Different Precipitation Datasets over Tianshan Mountainous Area. Adv. Meteorol. 2015, 2015, 617382. [Google Scholar] [CrossRef]
- Silvestro, F.; Rebora, N.; Ferraris, L. An Algorithm for Real-Time Rainfall Rate Estimation by Using Polarimetric Radar: RIME. J. Hydrometeorol. 2009, 10, 227–240. [Google Scholar] [CrossRef]












| Site | Channel A | Channel B | ||||||
|---|---|---|---|---|---|---|---|---|
| Satellite | ϑ [°] | Sub-Band | Satellite | ϑ [°] | Sub-Band | |||
| Stazione S2 Torcia | Turksat 42E | 29.1 | 475 | High | Astra 19.2E | 37.7 | 475 | High |
| PZS1 | Turksat 42E | 29.1 | 560 | High | Astra 19.2E | 37.7 | 560 | High |
| Pala Eolica | Turksat 42E | 29.1 | 600 | High | Astra 19.2E | 37.7 | 600 | High |
| Uffici Ingr | Turksat 42E | 29.1 | 590 | High | Astra 19.2E | 37.7 | 590 | High |
| Site | Channel A | Channel B | ||||||
|---|---|---|---|---|---|---|---|---|
| Stazione S2 Torcia | 3.08 | 0.01 | 2.21 | 0.01 | 2.07 | 0.06 | 1.40 | 0.06 |
| PZS1 | 1.90 | 0 | 1.46 | 0 | 0.96 | 0.33 | 1.31 | 0.32 |
| Pala Eolica | 2.68 | 0.01 | 2.09 | 0.01 | 1.44 | 0.09 | 1.46 | 0.09 |
| Uffici Ingr | 2.61 | 0.01 | 1.93 | 0.01 | 1.74 | 0.06 | 1.38 | 0.06 |
| Site | Channel A | Channel B | ||||||
|---|---|---|---|---|---|---|---|---|
| Stazione S2 Torcia | 1.35 | 0.07 | 3.78 | 0.88 | 2.93 | 0.21 | 3.66 | 0.75 |
| PZS1 | 1.13 | 0 | 3.95 | 0.44 | 0.79 | 0 | 4.03 | 0.37 |
| Pala Eolica | 0.91 | 0 | 4 | 0.46 | 1.06 | 0 | 4.17 | 0.41 |
| Uffici Ingr | 1.03 | 0 | 3.86 | 0.44 | 1.80 | 0 | 4.06 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnani, G.L.; Colli, M.; Tavanti, E.; Caviglia, D.D. Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study. Sensors 2021, 21, 691. https://doi.org/10.3390/s21030691
Gragnani GL, Colli M, Tavanti E, Caviglia DD. Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study. Sensors. 2021; 21(3):691. https://doi.org/10.3390/s21030691
Chicago/Turabian StyleGragnani, Gian Luigi, Matteo Colli, Emanuele Tavanti, and Daniele D. Caviglia. 2021. "Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study" Sensors 21, no. 3: 691. https://doi.org/10.3390/s21030691
APA StyleGragnani, G. L., Colli, M., Tavanti, E., & Caviglia, D. D. (2021). Advanced Real-Time Monitoring of Rainfall Using Commercial Satellite Broadcasting Service: A Case Study. Sensors, 21(3), 691. https://doi.org/10.3390/s21030691

