Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities
Abstract
:1. Introduction
2. Piezoelectric Energy Harvesting: Concepts and Methodologies
3. Smart City Piezoelectric Applications
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jettanasen, C.; Songsukthawan, P.; Ngaopitakkul, A. Development of micro-mobility based on piezoelectric energy harvesting for smart city applications. Sustainability 2020, 12, 2933. [Google Scholar] [CrossRef] [Green Version]
- Belli, L.; Cilfone, A.; Davoli, L.; Ferrari, G.; Adorni, P.; Di Nocera, F.; Dall’Olio, A.; Pellegrini, C.; Mordacci, M.; Bertolotti, E. IoT-enabled smart sustainable cities: Challenges and approaches. Smart Cities 2020, 3, 52. [Google Scholar] [CrossRef]
- Von Hippel, E. Democratizing Innovation; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Zorbas, D.; Razafindralambo, T.; Guerriero, F. Energy efficient mobile target tracking using flying drones. Procedia Comput. Sci. 2013, 19, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Vermesan, O.; Friess, P. Internet of Things—From Research and Innovation to Market Deployment; River Publishers: Aalborg, Denmark, 2014; Volume 29. [Google Scholar]
- Cabrini, F.H.; Valiante Filho, F.; Rito, P.; Barros Filho, A.; Sargento, S.; Venâncio Neto, A.; Kofuji, S.T. Enabling the Industrial Internet of Things to Cloud Continuum in a Real City Environment. Sensors 2021, 21, 7707. [Google Scholar] [CrossRef]
- Del Giudice, M.; Straub, D. Editor’s comments: IT and entrepreneurism: An on-again, off-again love affair or a marriage? MIS Q. 2011, 35, iii–viii. [Google Scholar]
- Cosgrave, E.; Arbuthnot, K.; Tryfonas, T. Living labs, innovation districts and information marketplaces: A systems approach for smart cities. Procedia Comput. Sci. 2013, 16, 668–677. [Google Scholar] [CrossRef] [Green Version]
- Zouinkhi, A.; Flah, A.; Mihet-Popa, L. A Novel Energy-Safe Algorithm for Enhancing the Battery Life for IoT Sensors’ Applications. Energies 2021, 14, 6613. [Google Scholar] [CrossRef]
- Ptak, A. Smart City Management in the Context of Electricity Consumption Savings. Energies 2021, 14, 6170. [Google Scholar] [CrossRef]
- Sami, M.S.; Abrar, M.; Akram, R.; Hussain, M.M.; Nazir, M.H.; Khan, M.S.; Raza, S. Energy Management of Microgrids for Smart Cities: A Review. Energies 2021, 14, 5976. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Clerici Maestosi, P. Smart Cities and Positive Energy Districts: Urban. Perspectives in 2020. Energies 2021, 14, 2351. [Google Scholar] [CrossRef]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A comprehensive review of recent advances in smart grids: A sustainable future with renewable energy resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Holler, J.; Tsiatsis, V.; Mulligan, C.; Karnouskos, S.; Avesand, S.; Boyle, D. From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence; Academic Press: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Hancke, G.P.; Hancke, G.P., Jr. The role of advanced sensing in smart cities. Sensors 2013, 13, 393–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izadgoshasb, I. Performance Enhancement of Human Motion Based Piezoelectric Energy Harvesters; Southern Cross University: East Lismore, Australia, 2019. [Google Scholar]
- Khan, Z.A.; Sherazi, H.H.R.; Ali, M.; Imran, M.A.; Rehman, I.U.; Chakrabarti, P. Designing a wind energy harvester for connected vehicles in green cities. Energies 2021, 14, 5408. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Q.; Xie, X. Ocean. wave energy harvesting with a piezoelectric coupled buoy structure. Appl. Ocean Res. 2015, 50, 110–118. [Google Scholar] [CrossRef]
- Williams, C.; Yates, R.B. Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 1996, 52, 8–11. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Erturk, A.; Zu, J. On the efficiency of piezoelectric energy harvesters. Extrem. Mech. Lett. 2017, 15, 26–37. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Zhang, H.; Corr, L.R.; Ma, T. Issues in vibration energy harvesting. J. Sound Vib. 2018, 421, 79–90. [Google Scholar] [CrossRef]
- Yildirim, T.; Ghayesh, M.H.; Li, W.; Alici, G. A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 2017, 71, 435–449. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Figueroa, J.; Li, W.; Chen, Z.; Wang, Z.L.; Sepúlveda, N. Understanding the dynamic response in ferroelectret nanogenerators to enable self-powered tactile systems and human-controlled micro-robots. Nano Energy 2019, 63, 103852. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Vasquez Padilla, R.; Sedighi, M.; Novak, J.P. Performance enhancement of a multiresonant piezoelectric energy harvester for low frequency vibrations. Energies 2019, 12, 2770. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, W.; Sepúlveda, N. Performance of self-powered, water-resistant bending sensor using transverse piezoelectric effect of polypropylene ferroelectret polymer. IEEE Sens. J. 2019, 19, 10327–10335. [Google Scholar] [CrossRef]
- Lee, B.; Lin, S.; Wu, W.; Wang, X.; Chang, P.; Lee, C. Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J. Micromech. Microeng. 2009, 19, 065014. [Google Scholar] [CrossRef]
- Kim, D.; Hewa-Kasakarage, N.N.; Hall, A.N. A theoretical and experimental comparison of 3–3 and 3–1 mode piezoelectric microelectromechanical systems (MEMS). Sens. Actuators A Phys. 2014, 219, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Leung, A.; Koo, C.Y.; Kuhn, L.; Jiang, W.; Kim, D.-J.; Kingon, A.I. Lead-free (Na0.5K0.5)(Nb0.95Ta0.05) O3–BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices. Mater. Lett. 2012, 69, 24–26. [Google Scholar] [CrossRef]
- Littrell, R.; Grosh, K. Modeling and characterization of cantilever-based MEMS piezoelectric sensors and actuators. J. Microelectromech. Syst. 2012, 21, 406–413. [Google Scholar] [CrossRef]
- Saadon, S.; Sidek, O. Micro-electro-mechanical system (MEMS)-based piezoelectric energy harvester for ambient vibrations. Procedia Soc. Behav. Sci. 2015, 195, 2353–2362. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Hwang, B.; Ham, Y.-H.; Jeong, J.; Min, N.-K.; Kwon, K.-H. Design, fabrication, and experimental demonstration of a piezoelectric cantilever for a low resonant frequency microelectromechanical system vibration energy harvester. J. Micro/Nanolithogr. MEMS MOEMS 2012, 11, 033009. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q.; Wu, N. A ring piezoelectric energy harvester excited by magnetic forces. Int. J. Eng. Sci. 2014, 77, 71–78. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q. A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires. Int. J. Eng. Sci. 2015, 94, 113–127. [Google Scholar] [CrossRef]
- Mei, J.; Li, L. Double-wall piezoelectric cylindrical energy harvester. Sens. Actuators A Phys. 2015, 233, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Dewan, A.; Ay, S.U.; Karim, M.N.; Beyenal, H. Alternative power sources for remote sensors: A review. J. Power Sources 2014, 245, 129–143. [Google Scholar] [CrossRef]
- Alkhaddeim, T.; AlShujaa, B.; AlBeiey, W.; AlNeyadi, F.; Al Ahmad, M. Piezoelectric energy droplet harvesting and modeling. In Proceedings of the IEEE 2012 SENSORS Conference, Taipei, Taiwan, 28–31 October 2012. [Google Scholar]
- Al Ahmad, M.; Jabbour, G.E. Electronically droplet energy harvesting using piezoelectric cantilevers. Electron. Lett. 2012, 48, 647–649. [Google Scholar] [CrossRef]
- Al Ahmad, M.; Alshareef, H.N. Energy harvesting from radio frequency propagation using piezoelectric cantilevers. Solid-State Electron. 2012, 68, 13–17. [Google Scholar] [CrossRef]
- Tawfiq, S.; Al Ahmad, M. Electromechanical analogy for d 33 piezoelectric harvester power calculations. In Proceedings of the IEEE European Conference on Circuit Theory and Design (ECCTD), Trondheim, Norway, 24–26 August 2015. [Google Scholar]
- Ferreira, B.; Van der Merwe, W. The Principles of Electronic and Electromechanic Power Conversion: A Systems Approach; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
- Stephen, N.G. On energy harvesting from ambient vibration. J. Sound Vib. 2006, 293, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Shearwood, C.; Harradine, M.; Mellor, P.; Birch, T.; Yates, R. Development of an electromagnetic micro-generator. IEE Proc. -Circuits Devices Syst. 2001, 148, 337–342. [Google Scholar] [CrossRef]
- Sedra, A.S.; Smith, K.C. Microelectronic Circuits: Theory and Applications; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Nechibvute, A.; Chawanda, A.; Luhanga, P. Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Mater. Res. 2012, 2012, 853481. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, A.; Sterken, T.; Renaud, M.; Fiorini, P.; Puers, R.; Van Hoof, C. Piezoelectric scavengers in MEMS technology: Fabrication and Simulation. In Proceedings of the 5th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2005), Tokyo, Japan, 28–30 November 2005. [Google Scholar]
- Choi, W.; Jeon, Y.; Jeong, J.-H.; Sood, R.; Kim, S.-G. Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceramics 2006, 17, 543–548. [Google Scholar] [CrossRef]
- Renaud, M.; Sterken, T.; Schmitz, A.; Fiorini, P.; Van Hoof, C.; Puers, R. Piezoelectric harvesters and MEMS technology: Fabrication, modeling and measurements. In Proceedings of the TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007. [Google Scholar]
- Kok, S.L.; White, N.M.; Harris, N.R. A free-standing, thick-film piezoelectric energy harvester. In Proceedings of the IEEE 2008 SENSORS, Lecce, Italy, 26–29 October 2008. [Google Scholar]
- Jeong, S.-J.; Kim, M.-S.; Song, J.-S.; Lee, H.-K. Two-layered piezoelectric bender device for micro-power generator. Sens. Actuators A Phys. 2008, 148, 158–167. [Google Scholar] [CrossRef]
- Kim, H.; Bedekar, V.; Islam, R.A.; Lee, W.-H.; Leo, D.; Priya, S. Laser-machined piezoelectric cantilevers for mechanical energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 1900–1905. [Google Scholar] [CrossRef]
- Ali, F.; Raza, W.; Li, X.; Gul, H.; Kim, K.-H. Piezoelectric energy harvesters for biomedical applications. Nano Energy 2019, 57, 879–902. [Google Scholar] [CrossRef]
- Jung, W.-S.; Lee, M.-J.; Kang, M.-G.; Moon, H.G.; Yoon, S.-J.; Baek, S.-H.; Kang, C.-Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Tang, L.; Padilla, R.V.; Tang, Z.S.; Sedighi, M. Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Convers. Manag. 2019, 184, 559–570. [Google Scholar] [CrossRef]
- Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. Parasitic power harvesting in shoes. In Proceedings of the Digest of Papers. 2nd International Symposium on Wearable Computers (Cat. No. 98EX215), Pittsburgh, PA, USA, 19–20 October 1998. [Google Scholar]
- Granstrom, J.; Feenstra, J.; Sodano, H.A.; Farinholt, K. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 2007, 16, 1810. [Google Scholar] [CrossRef]
- Puspitarini, D.; Suzianti, A.; Al Rasyid, H. Designing A Sustainable Energy-harvesting Stairway: Determining product specifications using TRIZ method. Procedia-Soc. Behav. Sci. 2016, 216, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Kluger, J.M.; Sapsis, T.P.; Slocum, A.H. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams. J. Sound Vib. 2015, 341, 174–194. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Strezov, V. Modelling piezoelectric energy harvesting potential in an educational building. Energy Convers. Manag. 2014, 85, 435–442. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q.; Wu, N. Potential of a piezoelectric energy harvester from sea waves. J. Sound Vib. 2014, 333, 1421–1429. [Google Scholar] [CrossRef]
- Priya, S. Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 2005, 87, 184101. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Q.; Wang, W. Optimization of galloping piezoelectric energy harvester with V-shaped groove in low wind speed. Energies 2019, 12, 4619. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-A.; Liu, N.-Z. A shear mode piezoelectric energy harvester based on a pressurized water flow. Sens. Actuators A Phys. 2011, 167, 449–458. [Google Scholar] [CrossRef]
- Spornraft, M.; Schwesinger, N. Flow Energy Harvester with nanoscale, piezoelectric material. In Proceedings of the Energy Self-Sufficient Sensors; 7th GMM-Workshop, Magdeburg, Germany, 24–25 February 2014. [Google Scholar]
- Zou, H.; Chen, H.; Zhu, X. Piezoelectric energy harvesting from vibrations induced by jet-resonator system. Mechatronics 2015, 26, 29–35. [Google Scholar] [CrossRef]
- Lafarge, B.; Delebarre, C.; Grondel, S.; Curea, O.; Hacala, A. Analysis and optimization of a piezoelectric harvester on a car damper. Phys. Procedia 2015, 70, 970–973. [Google Scholar] [CrossRef]
- Khameneifar, F.; Arzanpour, S. Energy harvesting from pneumatic tires using piezoelectric transducers. In Proceedings of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference, Ellicott City, MD, USA, 28–30 October 2008. [Google Scholar]
- Kulkarni, H.; Zohaib, K.; Khusru, A.; Aiyappa, K.S. Application of piezoelectric technology in automotive systems. Mater. Today Proc. 2018, 5, 21299–21304. [Google Scholar] [CrossRef]
- Xie, X.; Wu, N.; Yuen, K.V.; Wang, Q. Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass. Int. J. Eng. Sci. 2013, 72, 98–106. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q.; Wang, S. Energy harvesting from high-rise buildings by a piezoelectric harvester device. Energy 2015, 93, 1345–1352. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, Q.; Han, Y.; Lau, D. Piezoelectric materials for sustainable building structures: Fundamentals and applications. Renew. Sustain. Energy Rev. 2019, 101, 14–25. [Google Scholar] [CrossRef]
- Elhalwagy, A.M.; Ghoneem, M.Y.M.; Elhadidi, M. Feasibility study for using piezoelectric energy harvesting floor in buildings’ interior spaces. Energy Procedia 2017, 115, 114–126. [Google Scholar] [CrossRef]
- Garimella, R.C.; Sastry, V.; Mohiuddin, M.S. Piezo-Gen.-An. approach to generate electricity from vibrations. Procedia Earth Planet. Sci. 2015, 11, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, F.; Liu, P.; Fu, C.; Liu, Q.; Zhao, H.; Lin, P. Development and piezoelectric properties of a stack units-based piezoelectric device for roadway application. Sensors 2021, 21, 7708. [Google Scholar] [CrossRef] [PubMed]
- Moure, A.; Rodríguez, M.I.; Rueda, S.H.; Gonzalo, A.; Rubio-Marcos, F.; Cuadros, D.U.; Pérez-Lepe, A.; Fernández, J. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Convers. Manag. 2016, 112, 246–253. [Google Scholar] [CrossRef]
- Sazonov, E.; Li, H.; Curry, D.; Pillay, P. Self-powered sensors for monitoring of highway bridges. IEEE Sens. J. 2009, 9, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cao, D.; Yang, H.; He, M. Application of piezoelectric transducer in energy harvesting in pavement. Int. J. Pavement Res. Technol. 2018, 11, 388–395. [Google Scholar] [CrossRef]
- Shearwood, J.; Aldabashi, N.; Eltokhy, A.; Franklin, E.L.; Raine, N.E.; Zhang, C.; Palmer, E.; Cross, P.; Palego, C. C-Band Telemetry of Insect Pollinators Using a Miniature Transmitter and a Self-Piloted Drone. IEEE Trans. Microw. Theory Tech. 2020, 69, 938–946. [Google Scholar] [CrossRef]
- Aktakka, E.E.; Kim, H.; Najafi, K. Energy scavenging from insect flight. J. MicroMech. MicroEng. 2011, 21, 095016. [Google Scholar] [CrossRef] [Green Version]
Description of Piezoelectric Energy-Harvesting System | Design Geometry/Dimension | Resonant Frequency | Power Output/Voltage | Ref. |
---|---|---|---|---|
PZT and AIN device | Piezoelectric patch was placed on the top of the beam and was sandwiched between two electrodes | 300, 700 and 1000 Hz | 1–100 μW | [50] |
PZT cantilever beam | Dimension: 13.5 mm × 9 mm × 192 μm | 13.9, 21.9 and 48.5 kHZ | 2.4 V with 5.2 MΩ load, 1.01 μW | [51] |
PZT cantilever beam with interdigital electrodes | Dimension: 3000 μm × 1500 μm × 22 μm | 570 and 575 Hz | 1.127 Vp-p, 0.123 μW | [49] |
PZT-based energy harvester | The device is packed with the help of two wafers | 1.8 kHz | 40 μW | [52] |
Thick film PZT cantilever beam to operate in d31 mode | Dimension: 13.5 mm × 9 mm × 192 μm | 229 Hz | 270 nW at 9.81 m/s2; 130 V | [53] |
Two-layer PMNZT microgenerator | Dimension: 10 mm × 10 mm | 120 Hz | 2.0 Vp-p 0.5 mW | [54] |
Piezoelectric cantilever/Laser machined | 10 cantilevers with dimensions of 5.74 mm × 4 mm, 5 had tip masses attached | 870 Hz | 1.13 μW at 870 Hz through 288.5 kΩ, power density of 301.3 μW/cm3 | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadgoshasb, I. Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities. Sensors 2021, 21, 8332. https://doi.org/10.3390/s21248332
Izadgoshasb I. Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities. Sensors. 2021; 21(24):8332. https://doi.org/10.3390/s21248332
Chicago/Turabian StyleIzadgoshasb, Iman. 2021. "Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities" Sensors 21, no. 24: 8332. https://doi.org/10.3390/s21248332
APA StyleIzadgoshasb, I. (2021). Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities. Sensors, 21(24), 8332. https://doi.org/10.3390/s21248332