A Small and High-Speed Driving Mechanism for 3D Shape Measurement in Monocular Endoscopy
Abstract
:1. Introduction
2. Method
2.1. Principle of Shape from Focus
2.2. Device Design and Prototype Assembly
3. Experiments
3.1. Accuracy Test for Image-Sensor Reciprocation
3.2. Feasibility Test for 3D Shape Measurement of Organs
4. Results
4.1. Accuracy of Image-Sensor Positioning in SFF Reciprocation
4.2. 3D Shape Measurement for the In Vitro Porcine Stomach
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divetia, A.; Hsieh, T.-H.; Zhang, J.; Chen, Z.; Bachman, M.; Li, G.-P. Dynamically focused optical coherence tomography for endoscopic applications. Appl. Phys. Lett. 2005, 86, 103902. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Niizuma, T.; Sato, M. Three-dimensional imaging by high-speed wide field optical coherence tomography. Proc. Conf. Lasers Electro Opt. 2006. [Google Scholar] [CrossRef]
- Kiesslich, R.; Burg, J.; Vieth, M.; Gnaendiger, J.; Enders, M.; Delaney, P.; Polglase, A.; McLaren, W.; Janell, D.; Thomas, S.; et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 2004, 127, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.; Goetz, M.; Vieth, M.; Galle, P.R.; Neurath, M.F.; Kiesslich, R. Confocal laser endomicroscopy: Technical status and current indications. Endoscopy 2006, 38, 1275–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-H.; Lee, J.-Y.; Lee, M.-H. Development of 3-D stereo endoscopic image processing system. IEICE Trans. Inf. Syst. 2002, 85, 584–591. [Google Scholar]
- Stoyanov, D.; Darzi, A.; Yang, G.Z. A practical approach towards accurate dense 3D depth recovery for robotic laparoscopic surgery. Comput. Aided Surg. 2005, 10, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Okatani, T.; Deguchi, K. Shape reconstruction from an endoscope image by shape from shading technique for a point light source at the projection center. Comput. Vis. Image. Underst. 1997, 66, 119–131. [Google Scholar] [CrossRef]
- Prados, E.; Faugeras, O. Shape from shading: A well-posed problem? In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2006; pp. 870–877. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, K.; Sasano, T.; Arai, H.; Yoshikawa, H. 3-D shape reconstruction from endoscope image sequences by the factorization method. IEICE Trans. Inf. Syst. 1996, 79, 1329–1336. [Google Scholar]
- Thormähle, T.; Broszio, H.; Meier, P.N. Three-dimensional endoscopy. In Medical Imaging in Gastroenterology and Hepatology; Hagenmüller, F., Manns, M.P., Musmann, H.G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 199–212. [Google Scholar]
- Pentland, A.P. A new sense of depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Nayer, S.K.; Nakagawa, Y. Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, M.; Surya, G. Depth from defocus: A spatial domain approach. Int. J. Comput. Vis. 1994, 13, 271–294. [Google Scholar] [CrossRef]
- Takeshita, T.; Kim, M.; Nakajima, Y. 3-D shape measurement endoscope using a single-lens system. Int. J. CARS 2013, 8, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, K.S.; Rajagopalan, A.N. Improving shape from focus using defocus information. In Proceedings of the 2006 IEEE International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006. [Google Scholar]
- Pertuz, S.; Puig, D.; Gracia, M.A. Reliability measure for shape-from-focus. Image Vis. Comput. 2013, 31, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.S.; Muhammad, M.S.; Kang, M.K. Removal of non-Gaussian jitter noise for shape from focus through improved maximum correntropy criterion Karman filter. IEEE Access 2020, 2975274. [Google Scholar] [CrossRef]
- Zhou, X.; Molina, R.; Ma, Y.; Wang, T.; Ni, D. Parameter-free Gaussian PSF model for extended depth of field in brightfield microscopy. IEEE Trans. Image Process. 2020, 29, 3227–3238. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A. 3-D shape measurement using a focused-section method. In Proceedings of the International Conference on Pattern Recognition (ICPR-2000), Barcelona, Spain, 3–7 September 2000; pp. 828–832. [Google Scholar] [CrossRef]
- Ishii, A. Fast focus mechanism using a pair of convergent and divergent lenses differentially for three-dimensional imaging. In Proceedings of the MVA2011 IAPR Conference on Machine Vision Applications, Nara, Japan, 13–15 June 2011; pp. 168–172. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, Y.; Tanigaki, N.; Sugino, T.; Kawase, T.; Onogi, S. A Small and High-Speed Driving Mechanism for 3D Shape Measurement in Monocular Endoscopy. Sensors 2021, 21, 4887. https://doi.org/10.3390/s21144887
Nakajima Y, Tanigaki N, Sugino T, Kawase T, Onogi S. A Small and High-Speed Driving Mechanism for 3D Shape Measurement in Monocular Endoscopy. Sensors. 2021; 21(14):4887. https://doi.org/10.3390/s21144887
Chicago/Turabian StyleNakajima, Yoshikazu, Nobuyuki Tanigaki, Takaaki Sugino, Toshihiro Kawase, and Shinya Onogi. 2021. "A Small and High-Speed Driving Mechanism for 3D Shape Measurement in Monocular Endoscopy" Sensors 21, no. 14: 4887. https://doi.org/10.3390/s21144887
APA StyleNakajima, Y., Tanigaki, N., Sugino, T., Kawase, T., & Onogi, S. (2021). A Small and High-Speed Driving Mechanism for 3D Shape Measurement in Monocular Endoscopy. Sensors, 21(14), 4887. https://doi.org/10.3390/s21144887