Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System
Abstract
1. Introduction
2. Integration of Fiber Communication System and BOTDR Sensor System
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ng, W.P.; Kanesan, T.; Ghassemlooy, Z.; Lu, C. Theoretical and Experimental Optimum System Design for LTE-RoF Over Varying Transmission Span and Identification of System Nonlinear Limit. IEEE Photonics J. 2012, 4, 1560–1571. [Google Scholar] [CrossRef]
- Cao, J.; Ma, M.; Li, H.; Zhang, Y.; Luo, Z. A Survey on Security Aspects for LTE and LTE-A Networks. IEEE Commun. Surv. Tutor. 2014, 16, 283–302. [Google Scholar] [CrossRef]
- Alhasani, M.M.; Nguyen, Q.N.; Ohta, G.-I.; Sato, T. A Novel Four Single-Sideband M-QAM Modulation Scheme Using a Shadow Equalizer for MIMO System Toward 5G Communications. Sensors 2019, 19, 1944. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Santiago, R.; Szydełko, M.; Kliks, A.; Foukalas, F.; Haddad, Y.; Nolan, K.E.; Kelly, M.Y.; Masonta, M.T.; Balasingham, I. 5G: The Convergence of Wireless Communications. Wirel. Pers. Commun. 2015, 83, 1617–1642. [Google Scholar] [CrossRef] [PubMed]
- Barrias, A.; Casas, J.R.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed]
- Xiaoyi, B.; Lufan, Z.; Qinrong, Y.; Liang, C. Development and applications of the distributed temperature and strain sensors based on Brillouin scattering. In Proceedings of the IEEE ENSORS, Vienna, Austria, 24–27 October 2004; Volume 1213, pp. 1210–1213. [Google Scholar]
- Kurashima, T.; Horiguchi, T.; Izumita, H.; Furukawa, S.; Koyamada, Y. Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun. 1993, E76-B, 382–390. [Google Scholar]
- Horiguchi, T.; Kurashima, T.; Tateda, M. A technique to measure distributed strain in optical fibers. Ieee Photonics Technol. Lett. 1990, 2, 352–354. [Google Scholar] [CrossRef]
- Minardo, A.; Porcaro, G.; Giannetta, D.; Bernini, R.; Zeni, L. Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors. Appl. Opt. 2013, 52, 3770–3776. [Google Scholar] [CrossRef] [PubMed]
- Lalam, N.; Ng, W.P.; Dai, X.; Wu, Q.; Fu, Y.Q. Sensing range improvement of Brillouin optical time domain reflectometry (BOTDR) using inline erbium-doped fibre amplifier. In Proceedings of the IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Cho, Y.; Alahbabi, M.; Gunning, M.; Newson, T. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification. Opt. Lett. 2003, 28, 1651–1653. [Google Scholar] [CrossRef] [PubMed]
- Lalam, N.; Lu, P.; Buric, M.; Ohodnicki, P.R. Enhanced performance of Brillouin distributed fiber sensor with hybrid amplification. In Proceedings of the Defense and Commercial Sensing (DCS), Baltimore, MD, USA, 14 May 2019; p. 1100003. [Google Scholar]
- Cucka, M.; Munster, P.; Koci, L.; Horvath, T.; Filka, M.; Vojtech, J. Transmission of High Power Sensor System and DWDM Data System in One Optical Fiber. J. Commun. Softw. Syst. 2016, 12, 190–194. [Google Scholar] [CrossRef][Green Version]
- Munster, P.; Radil, J.; Vojtech, J.; Havlis, O.; Horvath, T.; Smotlacha, V.; Skaljo, E. Simultaneous transmission of the high-power phase sensitive OTDR, 100Gbps dual polarisation QPSK, accurate time/frequency, and their mutual interferences. In Proceedings of the Fiber Optic Sensors and Applications XIV, Anaheim, CA, USA, 9–13 April 2017; p. 102080D. [Google Scholar]
- Noor, S.; Assimakopoulos, P.; Gomes, N.J. A Flexible Subcarrier Multiplexing System With Analog Transport and Digital Processing for 5G (and Beyond) Fronthaul. J. Lightwave Technol. 2019, 37, 3689–3700. [Google Scholar] [CrossRef]
- Lalam, N.; Ng, W.P.; Dai, X.; Wu, Q.; Fu, Y.Q. Performance analysis of Brillouin optical time domain reflectometry (BOTDR) employing wavelength diversity and passive depolarizer techniques. Meas. Sci. Technol. 2018, 29, 025101. [Google Scholar] [CrossRef]
- Al-Musawi, H.K.; Cseh, T.; Bohata, J.; Ng, W.P.; Ghassemlooy, Z.; Zvanovec, S.; Udvary, E.; Pesek, P. Adaptation of Mode Filtering Technique in 4G-LTE Hybrid RoMMF-FSO for Last-Mile Access Network. IEEE J. Lightwave Technol. 2017, 35, 3758–3764. [Google Scholar] [CrossRef]
- Schmogrow, R.; Nebendahl, B.; Winter, M.; Josten, A.; Hillerkuss, D.; Koenig, S.; Meyer, J.; Dreschmann, M.; Huebner, M.; Koos, C.; et al. Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats. IEEE Photonics Technol. Lett. 2012, 24, 61–63. [Google Scholar] [CrossRef]
- Lalam, N.; Ng, W.P.; Dai, X.; Fu, Q.W.Y.Q. Performance Improvement of Brillouin Ring Laser Based BOTDR System Employing a Wavelength Diversity Technique. IEEE J. Lightwave Technol. 2018, 36, 1084–1090. [Google Scholar] [CrossRef]
Fiber Communication System | BOTDR Sensor System | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
optical wavelength | 1550 nm | optical wavelength | 1546.12 nm |
optical power | 0 to 10 dBm | input pump power | 14, 16 and 18 dBm |
modulation scheme | QPSK, 16-QAM and 64-QAM | DD-MZM bandwidth | 12 GHz |
bit rate (at channel bandwidth: 10 MHz) | QPSK = 16 Mbps 16-QAM= 33 Mbps 64-QAM = 50 Mbps | pulse width, period | 50 ns, 255µs |
baseband multiplexing | OFDM | pulse repetition rate | 4.2 kHz |
carrier frequency | 2.6 GHz | pulse amplitude | 4 Vpp |
channel bandwidth | 10 MHz | EDFA 1 gain, noise figure | 30 dB, 6 dB |
RF power | 0 dBm | EDFA 2 gain, noise figure | 28 dB, 5.5 dB |
MZM bandwidth | 20 GHz | ASE filter passband | 1545–1555 nm |
EDFA gain, noise Figure | 28 dB, 4.8 dB | PMF length | 5 km |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, W.P.; Lalam, N.; Dai, X.; Wu, Q.; Fu, Y.Q.; Harrington, P.; Gomes, N.J.; Lu, C. Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System. Sensors 2020, 20, 2232. https://doi.org/10.3390/s20082232
Ng WP, Lalam N, Dai X, Wu Q, Fu YQ, Harrington P, Gomes NJ, Lu C. Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System. Sensors. 2020; 20(8):2232. https://doi.org/10.3390/s20082232
Chicago/Turabian StyleNg, Wai Pang, Nageswara Lalam, Xuewu Dai, Qiang Wu, Yong Qing Fu, Peter Harrington, Nathan J. Gomes, and Chao Lu. 2020. "Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System" Sensors 20, no. 8: 2232. https://doi.org/10.3390/s20082232
APA StyleNg, W. P., Lalam, N., Dai, X., Wu, Q., Fu, Y. Q., Harrington, P., Gomes, N. J., & Lu, C. (2020). Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System. Sensors, 20(8), 2232. https://doi.org/10.3390/s20082232