# Local Wireless Sensor Networks Positioning Reliability Under Sensor Failure

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Taylor-Based Positioning Algorithm in Time Difference of Arrival (TDOA) Systems

## 3. Cramer Rao Lower Bound (CRLB) Modeling in TDOA Systems

## 4. Genetic Algorithm (GA) Optimization

## 5. Results

## 6. Discussion

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

AGVs | Automatic Ground Vehicles |

CRLB | Cramer Rao Lower Bound |

FIM | Fisher Information Matrix |

GA | Genetic Algorithm |

GNSS | Global Navigation Satellite Systems |

LPS | Local Positioning Systems |

NLOS | Non-Line-of-Sight |

PDOP | Position Dilution of Precision |

RMSE | Root Mean Square Error |

TDOA | Time Difference of Arrival |

TOA | Time of Arrival |

TS | Target Sensor |

UAVs | Unmanned Aerial Vehicles |

WGN | White Gaussian Noise |

## References

- Lin, S.; Cheng, K.; Wang, K.; Yang, K. Visual Localizer: Outdoor Localization Based on ConvNet Descriptor and Global Optimization for Visually Impaired Pedestrians. Sensors
**2018**, 18, 2476. [Google Scholar] [CrossRef] [Green Version] - Cheng, R.; Wang, K.; Lin, S.; Hu, W.; Yang, K.; Huang, X.; Li, H.; Sun, D.; Bai, J. Panoramic Annular Localizer: Tackling the Variation Challenges of Outdoor Localization Using Panoramic Annular Images and Active Deep Descriptors. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019. [Google Scholar]
- Shen, H.; Ding, S.; Dasgupta, S.; Zhao, C. Multiple Source Localization in Wireless Sensor Networks Based on Time of Arrival Measurement. IEEE Trans. Signal Process.
**2014**, 62, 1938–1949. [Google Scholar] [CrossRef] - Yiu, S.; Dashti, M.; Claussen, H.; Perez-Cruz, F. Wireless RSSI Fingerprinting Localization. Signal Process.
**2017**, 131, 235–244. [Google Scholar] [CrossRef] - Lindgren, D.; Hendeby, G.; Gustafsson, F. Distributed Localization Using Acoustic Doppler. Signal Process.
**2015**, 107, 43–53. [Google Scholar] [CrossRef] [Green Version] - Rong, P.; Sichitiu, M.L. Angle of Arrival Localization for Wireless Sensor Networks. In Proceedings of the 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA, 28–28 September 2006; pp. 374–382. [Google Scholar]
- Sackenreuter, B.; Hadaschik, N.; Faßbinder, M.; Mutschler, C. Low-complexity PDoA-based localization. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain, 4–7 October 2016; pp. 1–6. [Google Scholar]
- Yin, J.; Wan, Q.; Yang, S.; Ho, K.C. A Simple and Accurate TDOA-AOA Localization Method Using Two Stations. IEEE Signal Process Lett.
**2016**, 23, 144–148. [Google Scholar] [CrossRef] - Shen, J.; Molisch, A.F.; Salmi, J. Accurate Passive Location Estimation Using TOA Measurements. IEEE Trans. Wireless Commun.
**2012**, 11, 2182–2192. [Google Scholar] [CrossRef] - Lanxin, L.; So, H.C.; Frankie, K.W.; Chan, K.W.; Chan, Y.T.; Ho, K.C. A New Constrained Weighted Least Squares Algorithm for TDOA-based Localization. Signal Process.
**2013**, 11, 2872–2878. [Google Scholar] - He, S.; Dong, X. High-Accuracy Localization Platform Using Asynchronous Time Difference of Arrival Technology. IEEE Trans. Instrum. Meas.
**2017**, 66, 1728–1742. [Google Scholar] [CrossRef] - Priyantha, N.B.; Balakrishnan, H.; Demaine, E.D.; Teller, S. Mobile-assisted Localization in Wireless Sensor Networks. In Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005; pp. 172–183. [Google Scholar]
- Díez-González, J.; Álvarez, R.; Sánchez-González, L.; Fernández-Robles, L.; Pérez, H.; Castejón-Limas, M. 3D Tdoa Problem Solution with Four Receiving Nodes. Sensors
**2019**, 19, 2892. [Google Scholar] [CrossRef] [Green Version] - Yang, K.; Xu, Z. A Quadratic Constraint Total Least-squares Algorithm for Hyperbolic Location. I.J. Commun. Netw. Syst. Sci.
**2008**, 2, 130–135. [Google Scholar] [CrossRef] [Green Version] - Yunlong, T.; Jinling, W.; Qi, H. Mathematical minimum of Geometric Dilution of Precision (GDOP) for dual-GNSS constellations. Adv. Space Res.
**2016**, 57, 183–188. [Google Scholar] - Huang, B.; Xie, L.; Yang, Z. TDOA-Based Source Localization With Distance-Dependent Noises. IEEE Trans. Wireless Commun.
**2015**, 14, 468–480. [Google Scholar] [CrossRef] - Lanzisera, S.; Zats, D.; Pister, K.S.J. Radio Frequency Time-of-Flight Distance Measurement for Low-Cost Wireless Sensor Localization. IEEE Sens. J.
**2011**, 11, 837–845. [Google Scholar] [CrossRef] - Kaune, R.; Hörst, J.; Koch, W. Accuracy Analysis for TDOA Localization in Sensor Networks. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011. [Google Scholar]
- Rappaport, T.S. Wireless Communications-Principles and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Álvarez, R.; Díez-González, J.; Alonso, E.; Fernández-Robles, L.; Castejón-Limas, M.; Perez, H. Accuracy Analysis in Sensor Networks for Asynchronous Positioning Methods. Sensors
**2019**, 13, 3024. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Díez-González, J.; Álvarez, R.; González-Bárcena, D.; Sánchez-González, L.; Castejón-Limas, M.; Perez, H. Genetic Algorithm Approach to the 3D Node Localization in TDOA Systems. Sensors
**2019**, 19, 3880. [Google Scholar] [CrossRef] [Green Version] - Peng, B.; Li, L. An Improved Localization Algorithm Based on Genetic Agorithm in Wireless Sensor Networks. Cogitive Neurodynamics
**2015**, 9, 249–256. [Google Scholar] [CrossRef] [Green Version] - Domingo-Perez, F.; Lazaro-Galilea, J.L.; Wieser, A.; Martin-Gorostiza, E.; Salido-Monzu, D.; de la Llana, A. Sensor Placement Determination for Range-difference Positioning Using Evolutionary Multi-objective Optimization. Expert Syst. Appl.
**2016**, 47, 95–105. [Google Scholar] [CrossRef] - Zhang, Q.; Wang, J.; Jin, C.; Ye, J.; Ma, C.; Zhang, W. Genetic Algorithm Based Wireless Sensor Network Localization. In Proceedings of the Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008. [Google Scholar]
- Mnasri, S.; Thaljaoui, A.; Nasri, N.; Val, T. A Genetic Glgorithm-based Approach to Optimize the Coverage and the Localizationin the Wireless Audio-sensors Networks. In Proceedings of the IEEE International Symposium on Networks, Hammamet, Tunisia, 13–15 May 2015. [Google Scholar]
- Laguna, M.; Jiménez, A.; Seco, F. Diversified Local Search for the Optimal Layout of Beacons in an Indoor Positioning System. IIE Trans.
**2007**, 41, 247–259. [Google Scholar] [CrossRef] - Rajagopal, N.; Chayapathy, S.; Sinopoli, B.; Rowe, A. Beacon Placement for Range-based Indoor Localization. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain, 4–7 October 2016. [Google Scholar]
- Stoica, P.; Li, J. Source Localization from Range-Difference Measurements. IEEE Signal Process Mag.
**2006**, 23, 63–69. [Google Scholar] [CrossRef] - Bakhoum, E.G. Closed-Form Solution of Hyperbolic Geolocation Equations. IEEE Trans. Aerosp. Electron. Syst.
**2006**, 42, 1396–1404. [Google Scholar] [CrossRef] - Bonan, J.; Xiaosu, X.; Zhang, T. Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares with Cone Tangent Plane Constraint. Sensors
**2018**, 18, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ruz, M.L.; Garrido, J.; Jiménez, J.; Virrankoski, R.; Vázquez, F. Simulation Tool for the Analysis of Cooperative Localization Algorithms for Wireless Sensor Networks. Sensors
**2019**, 19, 2866. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kowalski, M.; Willett, P.; Fair, T.; Bar-Shalom, Y. CRLB for Estimating Time-Varying Rotational Biases in Passive Sensors. IEEE Trans. Aerosp. Electron. Syst.
**2019**, 56, 343–355. [Google Scholar] [CrossRef] - Hu, D.; Chen, S.; Bai, H.; Zhao, C.; Luo, L. CRLB for Joint Estimation of TDOA, Phase, FDOA, and Doppler Rate. The J. Eng.
**2019**, 21, 7628–7631. [Google Scholar] [CrossRef] - Yaro, A.S.; Sha’ameri, A.Z. Effect of Path Loss Propagation Model on the Position Estimation Accuracy of a 3-Dimensional Minimum Configuration Multilateration System. Int. J. Integr. Eng.
**2018**, 10, 35–42. [Google Scholar]

**Figure 2.**The scenario of simulations. The reference surface is depicted is grey tones. Node Location Environment (NLE) and Target Location Environment (TLE) regions are respectively shown in orange and purple colors. The discretized points of the TLE zone are the points employed for the optimization of the Time Difference of Arrival (TDOA) architecture performance. In the case of the NLE area, the points shown are only a representation of the area where every sensor can be located.

**Figure 3.**Accuracy analysis in terms of Cramer Rao Lower Bound (CRLB) in meters for a random sensor distribution of five sensors, under the assumption of one randomly malfunction sensor. Black spheres indicate the location of active sensors and red spheres highlights the sensor which is not available. Red tones in the color bar indicate bad accuracy evaluations, while green tones imply acceptable accuracy values.

**Figure 4.**Convergence radius analysis in meters for a random sensor distribution of 5 sensors, under the assumption of one randomly malfunction sensor. The convergence radius represents the maximum radius of the sphere of convergence in which every inside point used as initial iterating point of the positioning algorithm guarantees the unequivocal position determination by using the four available sensors. It represents the same operating condition than Figure 2. Red tones in the color bar indicate bad convergence radius values, while green tones imply acceptable convergence magnitudes.

**Figure 5.**Accuracy analysis in terms of CRLB in meters for the optimized distribution of 5 sensors under possible failure. The condition represented corresponds with the Case I - Sensor Fail 1 of Table 3. Red tones in the color bar indicate badly accuracy evaluations, while green tones imply acceptable accuracy values.

**Figure 6.**Convergence radius analysis in meters for the optimized distribution of 5 sensors under possible failure. The condition represented corresponds with the Case I - Sensor Fail 5 of Table 3. Red tones in the color bar indicate badly convergence radius values, while green tones imply acceptable convergence magnitudes.

Parameter | Value |
---|---|

Transmission power | 100 W |

Mean noise power | −94 dBm |

Frequency of emission | 1090 MHz |

Bandwidth | 100 MHz |

Path loss exponent | 2.05 |

Antennae gains | Unity |

Time-Frequency product | 1 |

GA | Selection |
---|---|

Population size | 90 |

Selection technique | Tournament 2 |

% Elitism | 5 |

Crossover technique | Single-point |

% Mutation | 3 |

Convergence criteria | 80% individuals equals |

Parameter Considered | Case I | Case II |
---|---|---|

Nominal Operating Conditions (5 sensors distribution) | ✓ | ✓ |

Failure Conditions (4 sensors distributions) | ✓ | X |

Convergence Maximization | ✓ | X |

Sensor Distributions | Sensor Fail | CRLB Evaluation TDOA (meters) | Convergence Evaluation (meters) | ||||
---|---|---|---|---|---|---|---|

Max | Mean | Min | Max | Mean | Min | ||

Case I | Sensor 1 | 62.408 | 0.651 | 0.233 | 300 | 138.684 | 35 |

Sensor 2 | 133.556 | 0.875 | 0.216 | 240 | 125.786 | 40 | |

Sensor 3 | 117.304 | 0.627 | 0.223 | 280 | 154.237 | 40 | |

Sensor 4 | 191.480 | 2.005 | 0.196 | 300 | 138.851 | 35 | |

Sensor 5 | 188.676 | 7.425 | 0.237 | 220 | 129.149 | 4 | |

None | 0.795 | 0.326 | 0.154 | 300 | 140.229 | 40 | |

Case II | Sensor 1 | 206.049 | 1.340 | 0.225 | 240 | 103.711 | 2 |

Sensor 2 | 159.772 | 1.512 | 0.149 | 280 | 84.650 | 2 | |

Sensor 3 | 65.487 | 1.688 | 0.169 | 220 | 102.037 | 4 | |

Sensor 4 | 199.168 | 0.629 | 0.182 | 260 | 113.604 | 2 | |

Sensor 5 | 2340.42 | 9.674 | 0.181 | 240 | 70.850 | 2 | |

None | 0.872 | 0.312 | 0.143 | 300 | 128.306 | 10 |

**Table 5.**Comparative between the optimizations of Case I and II. Values presented show the comparison in relative terms of the failure consideration distribution regarding the optimization for normal operation of the system.

Performance Analysis | Case I | Case II | Sensor Distribution: Case I vs Case II | |
---|---|---|---|---|

Mean CRLB Evaluation TDOA (meters) | Failure conditions | 2.316 | 2.969 | −22.0 % |

Non-Failure conditions | 0.326 | 0.312 | +4.3 % | |

Mean Convergence Evaluation (meters) | Failure conditions | 137.341 | 94.970 | +30.9 % |

Non-Failure conditions | 140.229 | 128.306 | +8.5 % |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Díez-González, J.; Álvarez, R.; Prieto-Fernández, N.; Perez, H.
Local Wireless Sensor Networks Positioning Reliability Under Sensor Failure. *Sensors* **2020**, *20*, 1426.
https://doi.org/10.3390/s20051426

**AMA Style**

Díez-González J, Álvarez R, Prieto-Fernández N, Perez H.
Local Wireless Sensor Networks Positioning Reliability Under Sensor Failure. *Sensors*. 2020; 20(5):1426.
https://doi.org/10.3390/s20051426

**Chicago/Turabian Style**

Díez-González, Javier, Rubén Álvarez, Natalia Prieto-Fernández, and Hilde Perez.
2020. "Local Wireless Sensor Networks Positioning Reliability Under Sensor Failure" *Sensors* 20, no. 5: 1426.
https://doi.org/10.3390/s20051426