Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel
Abstract
1. Introduction
2. Monte Carlo Simulation Method
2.1. Scattering Phase Function
2.2. Photon Propagation
2.2.1. Propagation Distance
2.2.2. Photon Weight
2.2.3. Propagation Direction
2.3. Photons Termination
2.4. Photons Reception
3. The 3 dB Optical Intensity Spot Radius
4. Numerical Results and Analysis
4.1. Pure Seawater Channel
4.2. Clean Seawater Channel
4.3. Coastal Seawater Channel
4.4. Harbor Seawater Channel
4.5. Verification for the 3 dB Optical Intensity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Willner, A.E.; Zhao, Z.; Ren, Y.; Li, L.; Xie, G.; Song, H.; Liu, C.; Zhang, R.; Bao, C.; Pang, K. Underwater optical communications using orbital angular momentum-based spatial divisionmultiplexing. Opt. Commun. 2018, 19, 21–25. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater wireless optical communication. IEEE Commun. Surv. Tutor. 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Jaruwatanadilok, S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory. IEEE J. Select. Areas Commun. 2008, 26, 1620–1626. [Google Scholar] [CrossRef]
- Cochenour, B.M.; Mullen, L.J.; Laux, A.E. Characterization of the beam-spread function for underwater wireless optical communications links. IEEE J. Ocean. Eng. 2008, 33, 513–521. [Google Scholar] [CrossRef]
- Mullen, L.; Laux, A.; Cochenour, B. Time-dependent underwater optical propagation measurements using modulated light fields. In Proceedings of the SPIE 7317, Ocean Sensing and Monitoring, Orlando, FL, USA, 29 April 2009; pp. 1–8. [Google Scholar]
- Mullen, L.; Laux, A.; Cochenour, B. Propagation of modulated light in water: Implications for imaging and communications systems. Appl. Opt. 2009, 48, 2607–2612. [Google Scholar] [CrossRef]
- Mullen, L.; Laux, A.; Cochenour, B. Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water. Appl. Opt. 2011, 50, 1396–1404. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Zhou, Q.; Zhou, B.; Wang, H. Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation. J. Opt. 2012, 14, 015403. [Google Scholar] [CrossRef]
- Gabriel, C.; Khalighi, M.A.; Bourennane, S.; Léon, P.; Rigaud, V. Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 2013, 5, 1–12. [Google Scholar] [CrossRef]
- Cochenour, B.; Mullen, L.; Muth, J. Temporal response of the underwater optical channel for high-bandwidth wireless laser communications. IEEE J. Ocean. Commun. Eng. 2013, 38, 730–742. [Google Scholar] [CrossRef]
- Cox, W.; Muth, J. Simulating channel losses in an underwater optical communication system. J. Opt. Soc. Am. Opt. Image Sci. Vis. 2014, 31, 920–934. [Google Scholar] [CrossRef]
- Liu, W.; Zou, D.; Wang, P.; Xu, Z.; Yang, L. Wavelength dependent channel characterization for underwater optical wireless communications. In Proceedings of the 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, 5–8 August 2014; pp. 1–5. [Google Scholar]
- Haltrin, V. Chlorophyll-based model of seawater optical properties. Appl. Opt. 1999, 38, 6826–6832. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Park, K.H.; Alouini, M.S. On the use of a direct radiative transfer equation solver for path loss calculation in underwater optical wireless channels. IEEE Wirel. Commun. Lett. 2015, 4, 561–564. [Google Scholar] [CrossRef]
- Tang, S.; Dong, Y.; Zhang, X. Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 2014, 62, 226–234. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y. Impulse response modeling for general underwater wireless optical MIMO links. IEEE Commun. Mag. 2016, 54, 56–61. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y. General stochastic channel model and performance evaluation for underwater wireless optical links. IEEE Trans. Wirel. Commun. 2016, 15, 1162–1173. [Google Scholar] [CrossRef]
- Wang, C.; Yu, H.Y.; Zhu, Y.J. A long distance underwater visible light communication system with single photon avalanche diode. IEEE Photonics J. 2016, 8, 7906311. [Google Scholar] [CrossRef]
- Huang, A.P.; Tao, L.W. Monte Carlo based channel characteristics for underwater optical wireless communications. IEICE Trans. 2017, E100-B, 612–618. [Google Scholar] [CrossRef]
- Dong, F.; Xu, L.; Jiang, D.; Zhang, T. Monte-Carlo-based impulse response modeling for underwater wireless optical communication. Prog. Electromagn. Res. 2017, 54, 137–144. [Google Scholar] [CrossRef]
- Oubei, H.M.; Zedini, E.; ElAfandy, R.T.; Kammoun, A.; Abdallah, M.; Ng, T.K.; Hamdi, M.; Alouini, M.S.; Ooi, B.S. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Opt. Lett. 2017, 42, 2455–2458. [Google Scholar] [CrossRef]
- Vali, Z.; Gholami, A.; Ghassemlooy, Z.; Michelson, D.G.; Omoomi, M.; Noori, H. Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation. J. Opt. Soc. Am. A 2017, 34, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, H.; Song, J. Monte-Carlo simulation-based characteristics of underwater scattering channel. Opt. Eng. Lett. 2017, 56, 070501. [Google Scholar] [CrossRef]
- Qadar, R.; Kasi, M.K.; Ayub, S.; Kakar, F.A. Monte Carlo-based channel estimation and performance evaluation for UWOC links under geometric losses. Int. J. Commun. Syst. 2018, 31, e3527. [Google Scholar] [CrossRef]
- Jasman, F.; Zaiton, A.M.; Ahmad, Z.; Rihawi, Z. Scattering regimes for underwater optical wireless communications using Monte Carlo simulation. Int. J. Elect. Comput. Eng. 2018, 8, 2571–2577. [Google Scholar] [CrossRef]
- Sahu, S.K.; Shanmugam, P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system. Opt. Commun. 2018, 408, 3–14. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Abolhassani, B.; Nabavi, P.; Chizari, A.; Khorramshahi, P.; Abdollahramezani, S.; Salehi, J.A. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- Li, Y.; Lesson, M.S.; Li, X. Impulse response modeling for underwater optical wireless channel. Appl. Opt. 2018, 57, 4815–4823. [Google Scholar] [CrossRef]
- Farshad, M.; Murat, U. Visible light communication channel modeling for underwater environments with blocking and shadowing. IEEE Access 2018, 6, 1082–1090. [Google Scholar]
- Mohammed, E.; Farshad, M.; Murat, U. Performance characterization of underwater visible light communication. IEEE Trans. Commun. 2019, 67, 543–552. [Google Scholar]
- Zedini, E.; Oubei, H.M.; Kammoun, A.; Hamdi, M.; Ooi, B.S.; Alouini, M.S. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Trans. Commun. 2019, 67, 2893–2907. [Google Scholar] [CrossRef]
- Roumelas, G.D.; Nistazakis, H.E.; Stassinakis, A.N.; Volos, C.K.; Tsigopoulos, A.D. Underwater optical wireless communications with chromatic dispersion and time jitter. Computation 2019, 7, 35. [Google Scholar] [CrossRef]
- Saxena, P.; Bhatnagar, M.R. A simplified form of beam spread function in underwater wireless optical communication and its applications. IEEE Access 2019, 7, 105298–105313. [Google Scholar] [CrossRef]
- Illi, E.; Bouanani, F.E.; Park, K.H.; Ayoub, F.; Alouini, M.S. An improved accurate solver for the time-dependent RTE in underwater optical wireless communications. IEEE Access 2019, 7, 96478–96494. [Google Scholar] [CrossRef]
- Hufnagel, F.; Sit, A.; Grenapin, F.; Bouchard, F.; Heshami, K.; England, D.; Zhang, Y.; Sussman, B.J.; Boyd, R.W.; Leuchs, G.; et al. Characterization of an underwater channel for quantum communications in the Ottawa River. Opt. Express 2019, 27, 26346–26354. [Google Scholar] [CrossRef]
- Sait, M.; Sun, X.; Alkhazragi, O.; Alfaraj, N.; Kong, M.; Ng, T.K.; Ooi, B.S. The effect of turbulence on NLOS underwater wireless optical communication channels. Chin. Opt. Lett. 2019, 17, 100013. [Google Scholar] [CrossRef]
- Mobley, C.D.; Sundman, L.K.; Boss, E. Phase function effects on oceanic light fields. Appl. Opt. 2002, 41, 1035–1050. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Pittsburgh, PA, USA, 1994. [Google Scholar]
- Leathers, R.A.; Downes, T.V.; Davis, C.O.; Mobley, C.D. Monte Carlo Radiative Transfer Simulations for Oceanoptics: A Practical Guide; Naval Reserch Laboratory: Washington, DC, USA, 2004. [Google Scholar]
- Cox, W. Simulation, Modeling, and Design of Underwater Optical Communication Systems; North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
Ref. No. | Methods | Contribution Highlights |
---|---|---|
[4] | VRT theory | Path losses. Received waveform degradation. Link bit error rate. |
[5] | BSF | Optical power distribution on the receiving plane. |
[6,7,8] | Experiments | Modulation depth, degree of polarization of modulated light. |
[9] | MC | CIR. Channel capacity. |
[10] | MC | Path losses. CIR. Bit error rate. Received photons distribution. |
[11] | Experiments | Effects of misalignment, scattering agents on temporal response. |
[12] | MC | Path losses for various channel configurations. |
[13] | MC | Wavelength-dependent path losses based on the bio-optical model of seawater given by [14]. |
[15] | RTE | Path losses modeled by direct RTE solver. |
[16] | Closed expression | CIR modeled by double gamma functions. |
[17] | Closed expression | MIMO CIR modeled by weight gamma function polynomial. |
[18] | Stochastic model | Spatial and temporal probability characteristics of photons. |
[19] | Closed expression | Path losses modeled by weighted function of two exponentials. |
[20] | MC | CIR and normalized received optical power. |
[21] | MC | Different effects of two scattering angle computational principle on CIR. |
[22] | Experiments | Statistical distribution of optical intensity fluctuations caused by temperature-induced oceanic turbulence. |
[23] | MC | Probability density function of oceanic turbulence channel. Turbulence-induced scintillation index and path losses. |
[24] | MC | Empirical model of transmission distance-dependent path losses. |
[25] | MC | Channel estimation and evaluation under geometric losses. |
[26] | MC | Scattering regimes of photons. |
[27] | MC | Optical receiving power, CIR based on a newly developed scattering phase function which better fit for real seawater. |
[28] | Experiments | Statistical model of intensity fluctuations caused by random temperature and salinity variations and air bubbles. Channel coherence time. |
[29] | Closed expression | New CIR model that is superior to the weighted double gamma functions. |
[30] | Ray tracing | CIR and path losses for blocking and shadowing channel. |
[31] | Modified BL law | Path losses. |
[32] | Experiments | Air bubble and temperature gradient-induced channel irradiance fluctuations presented by mixture exponential-generalized gamma distribution. |
[33] | Numerical Model | Influences of group velocity dispersion and time jitter at the pulse width, probability fade and maximum bit rate. |
[34] | BSF | Lower mathematical complexity and simplicity. |
[35] | RTE | Improved accurate solver for time-dependent RTE. |
[36] | Experiments | Beam’s wave-front distortion caused by turbulence. Real-time associated Zernike coefficients. Transmission of polarized light and light with OAM. |
[37] | Experiments | Impacts of temperature gradient-induced turbulence, population and size of air bubbles on non-line-of-sight channel. |
Items | Channel Parameters | |||
---|---|---|---|---|
Pure | Clean | Coastal | Harbor | |
0.053 | 0.069 | 0.088 | 0.295 | |
0.003 | 0.080 | 0.216 | 1.875 | |
0.056 | 0.150 | 0.305 | 2.170 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, X.; Rajbhandari, S.; Li, Y. Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel. Sensors 2020, 20, 422. https://doi.org/10.3390/s20020422
Wang W, Li X, Rajbhandari S, Li Y. Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel. Sensors. 2020; 20(2):422. https://doi.org/10.3390/s20020422
Chicago/Turabian StyleWang, Wei, Xiaoji Li, Sujan Rajbhandari, and Yanlong Li. 2020. "Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel" Sensors 20, no. 2: 422. https://doi.org/10.3390/s20020422
APA StyleWang, W., Li, X., Rajbhandari, S., & Li, Y. (2020). Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel. Sensors, 20(2), 422. https://doi.org/10.3390/s20020422