# Cognitive Interference Cancellation with Digital Channelizer for Satellite Communication

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Contributions

- Cognitive interference detection and cancellation schemes are proposed. The proposed approaches can be distinguished from the existing interference cancellation methods because they are based on a digital channelizer which is an essential part in a satellite, needed to utilize transponders bandwidth-efficiently.
- In the proposed interference cancellation, a range of the interference power which should be cancelled out is evaluated. For too weak interference, the interference cancellation causes more severe signal distortion than the interference level and the cancellation is not needed.
- The detection and false-alarm probabilities of the proposed interference detection schemes are analyzed. The validity of the analysis is also verified through simulations. Based on the analytical results, we can provide a guideline in designing the cognitive interference cancellation system under various conditions.

#### 1.2. Notations

## 2. System Model

## 3. Digital Channelizer

## 4. Cognitive Interference Cancellation

#### 4.1. Simple Interference Detection

#### 4.2. Improved Interference Detection

## 5. Performance Analysis

## 6. Numerical Results

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw.
**2002**, 38, 393–422. [Google Scholar] [CrossRef][Green Version] - Li, X.; Lu, R.; Liang, X.; Shen, X.; Chen, J.; Lin, X. Smart community: An Internet of Things application. IEEE Commun. Mag.
**2011**, 49, 68–75. [Google Scholar] [CrossRef] - De Sanctis, M.; Cianca, E.; Araniti, G.; Bisio, I.; Prasad, R. Satellite communications supporting Internet of remote Things. IEEE Internet Things J.
**2016**, 3, 113–123. [Google Scholar] [CrossRef] - Kawamoto, Y.; Nishiyama, H.; Fadlullah, Z.M.; Kato, N. Effective data collection via satellite-routed sensor system (SRSS) to realize global-scaled Internet of Things. IEEE Sens. J.
**2013**, 13, 3645–3654. [Google Scholar] [CrossRef] - Bisio, I.; Marchese, M. Efficient satellite-based sensor networks for information retrieval. IEEE Syst. J.
**2008**, 2, 464–475. [Google Scholar] [CrossRef] - Harris, F.J.; Dick, C.; Rice, M. Digital receivers and transmitters using polyphase filter banks for wireless communications. IEEE Trans. Microw. Theory Tech.
**2003**, 51, 1395–1412. [Google Scholar] [CrossRef] - Abu-Al-Saud, W.A.; Stuber, G.L. Efficient wideband channelizer for software radio systems using modulated PR filterbanks. IEEE Trans. Signal Process.
**2004**, 52, 2807–2820. [Google Scholar] [CrossRef] - Cetinsel, S.; Coskun, A.; Kale, I.; Hughes, R.; Ernst, C.; Angeletti, P. On board processor and processing strategies for next generation reconfigurable satellite payloads. In Proceedings of the 2019 9th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 11–14 June 2019; pp. 533–536. [Google Scholar]
- Perez-Neira, A.I.; Vazquez, M.A.; Maleki, S.; Shankar, M.R.B.; Chatzinotas, S. Signal processing for high throughput satellite systems: Challenges in new interference-limited scenarios. arXiv
**2019**, arXiv:1802.03958v1. [Google Scholar] - Evans, B.; Werner, M.; Lutz, E.; Bousquet, M.; Corazza, G.E.; Maral, G.; Rumeau, R. Integration of satellite and terrestrial systems in future multimedia communications. IEEE Wirel. Commun.
**2005**, 12, 72–80. [Google Scholar] [CrossRef][Green Version] - Linder, H.; Clausen, H.D.; Collini-Nocker, B. Satellite Internet services using DVB/MPEG-2 and multicast Web caching. IEEE Commun. Mag.
**2000**, 38, 156–161. [Google Scholar] [CrossRef] - Jung, S.; Ryu, J.K.; Oh, D.G.; Yu, H. Self-interference cancellation for shared band transmission in nonlinear satellite communication channels. ETRI J.
**2017**, 39, 771–781. [Google Scholar] [CrossRef] - Politis, C.; Maleki, S.; Tsinos, C.; Chatzinotas, S.; Ottersten, B. On-board the satellite interference detection with imperfect signal cancellation. In Proceedings of the 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 3–6 July 2016; pp. 1–5. [Google Scholar]
- Sud, S. Interference cancellation by repeated filtering in the fractional fourier transform domain using mean-square error convergence. J. Eng. Res. Appl.
**2016**, 6, 43–47. [Google Scholar] - Di Cecca, F.; Gallinaro, G.; Tirro, E.; Campa, C.; Cioni, S.; Angeletti, P.; Candreva, E.A.; Lombardo, F.; Vanelli-Coralli, A. Payload aspects of mobile satellite systems with on-ground beamforming and interference cancellation. In Proceedings of the 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Maui, HI, USA, 11–16 November 2012; pp. 1–4. [Google Scholar]
- Mitola, J. Cognitive radio for flexible mobile multimedia communications. In Proceedings of the 1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC’99), San Diego, CA, USA, 15–17 November 1999; pp. 3–10. [Google Scholar]
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun.
**2005**, 23, 201–220. [Google Scholar] [CrossRef] - Yu, H. Optimal primary pilot power allocation and secondary channel sensing in cognitive radios. IET Commun.
**2016**, 10, 487–494. [Google Scholar] [CrossRef] - Kay, S. Fundamentals of Statistical Signal Processing: Vol. II Detection Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Urkowitz, H. Energy detection of unknown deterministic signals. Proc. IEEE
**1967**, 55, 523–531. [Google Scholar] [CrossRef] - Poor, H.V. An Introduction to Signal Detection and Estimation, 2nd ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Johnston, J. A filter family designed for use in quadrature mirror filter banks. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’80), Denver, CO, USA, 9–11 April 1980; Volume 5, pp. 291–294. [Google Scholar]
- Jain, V.; Crochiere, R. Quadrature mirror filter design in the time domain. IEEE Trans. Acoust. Speech Signal Proc.
**1984**, 32, 353–361. [Google Scholar] [CrossRef] - Nguyen, T.Q. Near-perfect-reconstruction pseudo-QMF banks. IEEE Trans. Signal Proc.
**1994**, 42, 65–76. [Google Scholar] [CrossRef] - European Telecommunications Standards Institute. Digital Video Broadcasting; Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and other Broadband Satellite Applications. ETSI V1.2.1. 2009. Available online: http://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_40/en_302307v010201o.pdf (accessed on 10 January 2020).
- Khalid, W.; Yu, H. Spatial-temporal sensing and utilization in full duplex spectrum-heterogeneous cognitive radio networks for the Internet of Things. Sensors
**2019**, 19, 1441. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hu, X.L.; Ho, P.H.; Peng, L. Statistical properties of energy detection for spectrum sensing by using estimated noise variance. J. Sens. Actuator Netw.
**2019**, 8, 28. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Satellite communication channel with Earth and terminal stations, and satellite with a digital channelizer.

**Figure 4.**Power spectral density of filter banks with 16 subchannels: (

**a**) Discrete Fourier transform (DFT) filter bank and (

**b**) near-perfect reconstruction (NPR) polyphase filter bank.

**Figure 5.**Structure of fast Fourier transform (FFT) using radix-2 algorithm. ($x\left[k\right]$ is time-domain input with 1024 samples, $X\left[k\right]$ is the 1024-point FFT output, $E\left[k\right]$ and $O\left[k\right]$ are the 512-point FFT outputs with even- and odd-indexed samples, respectively, and ${W}_{1024}^{k}=exp\left(\frac{-i2\pi k}{1024}\right)$.)

**Figure 7.**Detailed structure of the continuous wave (CW) tone interference detection block in Figure 6 where $N=1024$.

**Figure 8.**Quadrature phase shift keying (QPSK) constellation with and without interference cancellation depending on the interference power: (

**a**) With interference cancellation in –25 dB lower interference than the desired signal, (

**b**) without interference cancellation in –25 dB lower interference than the desired signal, (

**c**) with interference cancellation in –5 dB lower interference than the desired signal, and (

**d**) without interference cancellation in –5 dB lower interference than the desired signal.

**Figure 9.**Error vector magnitude (EVM) performance with and without interference cancellation depending on interference power.

**Figure 10.**Interference detection performance of simple and improved approaches with respect to the number of blocks, L, when interference power is –23 dB lower than the desired signal, $\lambda =3$ for the simple method and ${\lambda}^{\prime}=6$ for the improved method: (

**a**) False alarm and detection probabilities and (

**b**) false alarm and misdetection probabilities.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, B.; Yu, H.; Noh, S.
Cognitive Interference Cancellation with Digital Channelizer for Satellite Communication. *Sensors* **2020**, *20*, 355.
https://doi.org/10.3390/s20020355

**AMA Style**

Kim B, Yu H, Noh S.
Cognitive Interference Cancellation with Digital Channelizer for Satellite Communication. *Sensors*. 2020; 20(2):355.
https://doi.org/10.3390/s20020355

**Chicago/Turabian Style**

Kim, Byounghak, Heejung Yu, and Song Noh.
2020. "Cognitive Interference Cancellation with Digital Channelizer for Satellite Communication" *Sensors* 20, no. 2: 355.
https://doi.org/10.3390/s20020355