Efficient Recognition of Informative Measurement in the RF-Based Device-Free Localization
Abstract
:1. Introduction
2. Related Work
2.1. Radio Tomographic Imaging
2.2. Back-Projection Radio Tomographic Imaging
2.3. RF-Link Recognition Based on Background Subtraction
3. Proposed Method
Algorithm 1: The recognition of informative RF links and use for BRTI reconstruction based on PCP. |
Control Variables: RSS Matrix Regularization Parameter , Eigenvalue Threshold , Link State Threshold , Iteration Restriction , Sampling Windows , Initialization: Initial Rank of L, , Background Link Matrix , Foreground Link Matrix , 1: for do 2: for do 3: ; 4: ; 5: for do 6: ; 7: end for 8: if then 9: ; 10: end if 11: ; 12: ; 13: ; 14: end for 15: ; 16: ; 17: for do 18: ; 19: if then 20: ; 21: else 22: ; 23: ; 24: end if 25: end for 26: ; 27: end for |
4. Experiment Design
5. Experiment Results
5.1. Recognized Results of Foreground-State RF Links
5.2. Reconstructed Image Based on the Informative RF Links
5.3. RF Link Analysis
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BRTI | Back-projection Radio Tomographic Imaging |
RF | Radio Frequency |
DFL | Device-Free Localization |
RSS | Received Signal Strength |
KDE | Kernel Density Estimation |
MoG | Mixture of Gaussians |
LS | Link Subtraction |
PCP | Principal Component Pursuit |
References
- Savazzi, S.; Sigg, S.; Nicoli, M.; Rampa, V.; Kianoush, S.; Spagnolini, U. Device-Free Radio Vision for Assisted Living: Leveraging wireless channel quality information for human sensing. IEEE Signal Process. Mag. 2016, 33, 45–58. [Google Scholar] [CrossRef]
- Wilson, J.; Patwari, N. Radio Tomographic Imaging with Wireless Networks. IEEE Trans. Mobile Comput. 2010, 9, 621–632. [Google Scholar] [Green Version]
- Bjorkbom, M.; Timonen, J.; Yigitler, H.; Kaltiokallio, O.; Myrsky, M.; Saarinen, J.; Korkalainen, M.; Cuhac, C.; Jantti, R.; Virrankoski, R. Localization Services for Online Common Operational Picture and Situation Awareness. IEEE Access 2013, 1, 742–757. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.R.; Martin, R.K.; Walker, T.O.; Thomas, R.W. Radio Tomography for Roadside Surveillance. IEEE J. Sel. Topics Signal Process. 2014, 8, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Kaltiokallio, O.; Bocca, M.; Patwari, N. Follow @grandma: Long-Term Device-Free Localization for Residential Monitoring. In Proceedings of the IEEE International Workshop on Practical Issues in Building Sensor Network Applications, Clearwater, FL, USA, 22–25 October 2012; pp. 991–998. [Google Scholar]
- Wilson, J.; Patwari, N. See-Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks. IEEE Trans. Mobile Comput. 2011, 10, 612–621. [Google Scholar] [CrossRef]
- Bocca, M.; Patwari, N.; Kaltiokallio, O. Enhancing the accuracy of radio tomographic imaging using channel diversity. In Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Las Vegas, NE, USA, 8–11 October 2012; pp. 254–262. [Google Scholar]
- Patwari, N.; Wilson, J. RF Sensor Networks for Device-Free Localization: Measurements, Models, and Algorithms. Proc. IEEE 2010, 98, 1961–1973. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Firner, B.; Zhang, Y.; Howard, R.; Li, J.; Lin, X. Improving RF-based device-free passive localization in cluttered indoor environments through probabilistic classification methods. In Proceedings of the International Conference on Information Processing in Sensor Networks, Beijing, China, 16–19 April 2012; pp. 209–220. [Google Scholar]
- Wilson, J.; Patwari, N. A Fade Level Skew-Laplace Signal Strength Model for Device-Free Localization with Wireless Networks. IEEE Trans. Mobile Comput. 2012, 11, 947–958. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, K.; Jiang, N.; Guo, X.; Li, Y.; Wang, G. An Exponential-Rayleigh Model for RSS-Based Device-Free Localization and Tracking. IEEE Trans. Mobile Comput. 2015, 14, 484–494. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, K.; Guo, X.; Wang, G. A hierarchical RSS model for RF-based device-free localization. Pervasive Mobile Comput. 2016, 31, 124–136. [Google Scholar] [CrossRef]
- Wilson, J.; Patwari, N.; Vasquez, F.G. Regularization methods for radio tomographic imaging. In Proceedings of the Virginia Tech Symposium on Wireless Personal Communications, Blacksburg, VA, USA, 3–5 June 2009. [Google Scholar]
- Wang, J.; Gao, Q.; Wang, H.; Yu, Y.; Jin, M. Time-of-Flight-Based Radio Tomography for Device Free Localization. IEEE Trans. Wirel. Commun. 2013, 12, 2355–2365. [Google Scholar] [CrossRef]
- Huang, K.; Tan, S.; Luo, Y.; Guo, X.; Wang, G. Enhanced radio tomographic imaging with heterogeneous Bayesian compressive sensing. Pervasive Mobile Comput. 2017, 40, 450–463. [Google Scholar] [CrossRef]
- Shang, B.; Tan, J.; Hong, X.; Guo, X.; Wang, G.; Liu, G.; Xue, S. Spatiotemporal Radio Tomographic Imaging with Bayesian Compressive Sensing for RSS-Based Indoor Target Localization. In Proceedings of the International Conference on Cloud Computing and Security, Nanjing, China, 16–18 June 2017; pp. 528–540. [Google Scholar]
- Tan, J.; Zhao, X.; Yang, L.; Guo, X.; Wang, G. Backprojection and Integration for the Multi-Scale Spatial Model in Radio Tomographic Imaging. In Proceedings of the Annual IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Tianjin, China, 19–23 July 2018. [Google Scholar]
- Yigitler, H.; Jantti, R.; Kaltiokallio, O.; Patwari, N. Detector Based Radio Tomographic Imaging. IEEE Trans. Mobile Comput. 2018, 17, 58–71. [Google Scholar] [CrossRef]
- Huang, K.; Luo, Y.; Guo, X.; Wang, G. Data-efficient radio tomographic imaging with adaptive Bayesian compressive sensing. In Proceedings of the IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 1859–1864. [Google Scholar]
- Piccardi, M. Background subtraction techniques: A review. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, 10–13 October 2004; pp. 3099–3104. [Google Scholar]
- Edelstein, A.; Rabbat, M. Background Subtraction for Online Calibration of Baseline RSS in RF Sensing Networks. IEEE Trans. Mobile Comput. 2013, 12, 2386–2398. [Google Scholar] [CrossRef] [Green Version]
- Men, A.; Xue, J.; Liu, J.; Xu, T.; Zheng, Y. Applying background learning algorithms to radio tomographic imaging. In Proceedings of the International Symposium on Wireless Personal Multimedia Communications, Taipei, Taiwan, 24–27 September 2012; pp. 1–5. [Google Scholar]
- Zheng, Y.; Men, A. Through-wall tracking with radio tomography networks using foreground detection. In Proceedings of the Wireless Communications and Networking Conference, Shangai, China, 7–10 April 2013; pp. 3278–3283. [Google Scholar]
- Candes, E.J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Rodriguez, P.; Wohlberg, B. Fast principal component pursuit via alternating minimization. In Proceedings of the IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 69–73. [Google Scholar]
- Zhao, Y.; Patwari, N.; Phillips, J.M.; Venkatasubramanian, S. Radio tomographic imaging and tracking of stationary and moving people via kernel distance. In Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor Networks, Philadelphia, PA, USA, 8–11 April 2013; pp. 229–240. [Google Scholar]
- Awad, M.; Khanna, R. Support Vector Regression. Neural Inf. Process. Lett. Rev. 2007, 11, 203–224. [Google Scholar]
- Wright, J.; Ganesh, A.; Rao, S.; Ma, Y. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization. NIPS 2009, 58, 289–298. [Google Scholar]
- Rodriguez, P.; Wohlberg, B. Incremental Principal Component Pursuit for Video Background Modeling. J. Math. Imaging Vis. 2016, 55, 1–18. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, M.; Wu, L.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv, 2010; arXiv:1009.5055. [Google Scholar]
Scene | Indoor | Outdoor | ||||
---|---|---|---|---|---|---|
Method | KDE-LS | MoG-LS | PCP | KDE-LS | MoG-LS | PCP |
Links | 97 | 76 | 12 | 85 | 68 | 9 |
Time(s) | 0.560 | 0.801 | 0.383 | 0.623 | 1.309 | 0.405 |
Error(m) | 0.257 | 0.248 | 0.231 | 0.291 | 0.285 | 0.264 |
Correlation | 0.547 | 0.634 | 0.743 | 0.685 | 0.714 | 0.851 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Guo, X.; Zhao, X.; Wang, G. Efficient Recognition of Informative Measurement in the RF-Based Device-Free Localization. Sensors 2019, 19, 1219. https://doi.org/10.3390/s19051219
Tan J, Guo X, Zhao X, Wang G. Efficient Recognition of Informative Measurement in the RF-Based Device-Free Localization. Sensors. 2019; 19(5):1219. https://doi.org/10.3390/s19051219
Chicago/Turabian StyleTan, Jiaju, Xuemei Guo, Xin Zhao, and Guoli Wang. 2019. "Efficient Recognition of Informative Measurement in the RF-Based Device-Free Localization" Sensors 19, no. 5: 1219. https://doi.org/10.3390/s19051219
APA StyleTan, J., Guo, X., Zhao, X., & Wang, G. (2019). Efficient Recognition of Informative Measurement in the RF-Based Device-Free Localization. Sensors, 19(5), 1219. https://doi.org/10.3390/s19051219