All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring
Abstract
:1. Introduction
2. Principle of Corrosion Monitoring
2.1. Principle of Rebar Corrosion Monitoring
2.2. Photoacoustic Sensors
2.3. Distributed Fiber Bragg Grating Sensors
3. Experiment Setup
3.1. Experimental Setup for Ultrasound Corrosion Monitoring
3.2. Preparation of Ultrasound Sensors on Steel Rebar
3.3. Preparation of Steel Rebar Corrosion Monitoring
4. Results and Discussion
4.1. Results and Discussion for Corrosion Mass Loss
4.2. Ultrasound Responses for Corrosion Monitoring
4.3. Spectrum Responses of Corrosion Levels
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Liao, L.; Zhao, R.; Zhou, J.; Yang, M.; Xia, R. The non-destructive test of steel corrosion in reinforced concrete bridges using a micro-magnetic sensor. Sensors 2016, 16, 1439. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Arteaga, E.; Stewart, M.G. Economic assessment of climate adaptation strategies for existing reinforced concrete structures subjected to chloride-induced corrosion. Struct. Infrastruct. Eng. 2016, 12, 432–449. [Google Scholar] [CrossRef] [Green Version]
- Sansalone, M.J. Impact-Echo: The complete story. ACI Struct. J. 1997, 94, 777–786. [Google Scholar]
- Kundu, T. Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Yu, T.; Owusu Twumasi, J.; Le, V.; Tang, Q.; D’Amico, N. Surface and Subsurface Remote Sensing of Concrete Structures using Synthetic Aperture Radar Imaging. J. Struct. Eng. 2017, 143, 1–11. [Google Scholar] [CrossRef]
- Bremer, K.; Weigand, F.; Zheng, Y.; Alwis, L.S.; Helbig, R.; Roth, B. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors. Sensors 2017, 17, 345. [Google Scholar] [CrossRef] [PubMed]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Cui, Y.; Wei, H.; Kong, X.; Zhang, P.; Sun, C. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique. Smart Mater. Struct. 2013, 22, 065014. [Google Scholar] [CrossRef]
- Hu, C.; Yu, Z.; Wang, A. An all fiber-optic multi-parameter structure health monitoring system. Opt. Express 2016, 24, 20287–20296. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Cai, C.S. Development of Fiber Optic Acoustic Emission Sensors for Applications in Civil Infrastructures. Adv. Struct. Eng. 2012, 15, 1471–1486. [Google Scholar] [CrossRef]
- Afzal, M.H.B.; Kabir, S.; Sidek, O. Fiber optic sensor-based concrete structural health monitoring. In Proceedings of the 2011 IEEE Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 24–26 April 2011; pp. 1–5. [Google Scholar]
- Biagi, E.; Brenci, M.; Fontani, S.; Masotti, L.; Pieraccini, M. Photoacoustic generation: Optical fiber ultrasonic sources for non destructive evaluation and clinical diagnosis. Opt. Rev. 1997, 4, 481–483. [Google Scholar] [CrossRef]
- Wu, N.; Zou, X.; Zhou, J.; Wang, X. Fiber optic ultrasound transmitters and their applications. Measurement 2016, 79, 164–171. [Google Scholar] [CrossRef]
- Fomitchov, P.A.; Kromine, A.K.; Krishnaswamy, S. Photoacoustic probes for nondestructive testing and biomedical applications. Appl. Opt. 2002, 41, 4451–4459. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Schmitt, T.; Perloff, D.; Wu, N.; Yu, T.Y.; Wang, X. Nondestructive corrosion detection using fiber optic photoacoustic ultrasound generator. Measurement 2015, 62, 74–80. [Google Scholar] [CrossRef]
- Zou, X.; Wu, N.; Tian, Y.; Wang, X. Broadband miniature fiber optic ultrasound generator. Opt. Express 2014, 22, 18119–18127. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Twumasi, J.O.; Tang, Q.; Wu, N.; Yu, T.; Wang, X. Real time corrosion detection of rebar using embeddable fiber optic ultrasound sensor. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, Denver, CO, USA, 3–7 March 2018; Volume 10598, p. 1059833. [Google Scholar]
- Tang, Q.; Du, C.; Wang, X.; Yu, T. Finite Element Simulation of Real-time Health Monitoring of Steel Rod using Active Fiber Optic Sensors. In Ultrasonics for Nondestructive Testing; American Society for Nondestructive Testing (ASNT): Columbus, OH, USA, 2017; pp. 76–82. [Google Scholar]
- Tang, Q.; Du, C.; Wang, X.; Yu, T. Finite Element Simulation of a New Ultrasonic Fiber Optic Sensor using Gold Nanocomposite. In Ultrasonics for Nondestructive Testing; American Society for Nondestructive Testing (ASNT): Columbus, OH, USA, 2016; pp. 46–50. [Google Scholar]
- Wu, N.; Tian, Y.; Zou, X.; Silva, V.; Chery, A.; Wang, X. High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite. JOSA B 2012, 29, 2016–2020. [Google Scholar] [CrossRef]
- Ervin, B.L.; Kuchma, D.A.; Bernhard, J.T.; Reis, H. Monitoring corrosion of rebar embedded in mortar using high-frequency guided ultrasonic waves. J. Eng. Mech. 2009, 135, 9–19. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Yang, W.; Zhang, W. Corrosion monitoring and evaluation of reinforced concrete structures utilizing the ultrasonic guided wave technique. Int. J. Distrib. Sens. Netw. 2014, 10, 827130. [Google Scholar] [CrossRef]
- Betz, D.C.; Thursby, G.; Culshaw, B.; Staszewski, W.J. Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Mater. Struct. 2003, 12, 122. [Google Scholar] [CrossRef]
- ASTM-G1-03. Standard Practice for Preparing, Cleaning and Evaluating Corrosion Tests Specimens; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
No. 4 Steel Rebar | S-Wave Velocity CS | Surface (Rayleigh) Wave Velocity CR | Propagation Time T |
---|---|---|---|
Poisson’s ratio ν = 0.3 | CS = √(E/(p(1 + v))) | CR = CS × ((0.87 + 1.12v))/(1 + v) | T = L/CR |
Young’s Modulus E (GPa) = 20 | |||
Density p (kg/m3) = 7850 | 3207.6 m/s | 2975.7 m/s | 6.9 µs |
Spraying Frequency: √ (24 h) | (1) | (2) | (3) | (4) |
---|---|---|---|---|
1 | √ | √ | √ | √ |
2 | √ | √ | √ | √ |
3 | - | √ | √ | √ |
4 | - | √ | √ | √ |
5 | - | - | √ | √ |
6 | - | - | √ | √ |
7 | - | - | - | √ |
8 | - | - | - | √ |
Corrosion Section | Corrosion Time, t (day) | Total Mass after Rust Removal, Mi (g) | Mass Loss, Δm (g) |
---|---|---|---|
(1) | 2 | 326.64 | 0.02 |
(2) | 4 | 326.58 | 0.04 |
(3) | 6 | 326.51 | 0.05 |
(4) | 8 | 326.21 | 0.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Owusu Twumasi, J.; Tang, Q.; Guo, X.; Zhou, J.; Yu, T.; Wang, X. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring. Sensors 2018, 18, 1353. https://doi.org/10.3390/s18051353
Du C, Owusu Twumasi J, Tang Q, Guo X, Zhou J, Yu T, Wang X. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring. Sensors. 2018; 18(5):1353. https://doi.org/10.3390/s18051353
Chicago/Turabian StyleDu, Cong, Jones Owusu Twumasi, Qixiang Tang, Xu Guo, Jingcheng Zhou, Tzuyang Yu, and Xingwei Wang. 2018. "All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring" Sensors 18, no. 5: 1353. https://doi.org/10.3390/s18051353
APA StyleDu, C., Owusu Twumasi, J., Tang, Q., Guo, X., Zhou, J., Yu, T., & Wang, X. (2018). All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring. Sensors, 18(5), 1353. https://doi.org/10.3390/s18051353