Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application
Abstract
:1. Introduction
2. Optimized Design of PM-PCF
2.1. Optimizing Optical Properties
2.2. Optimizing Thermal Properties
2.2.1. Model of Sn
2.2.2. Model of SL
2.2.3. Small-Diameter PM-PCF Structure with Optimized Thermal Properties
2.3. Fabricated Small-Diameter PM-PCF
2.4. Measurement of the S Constant
3. High Precision Solid-Core Photonic Crystal Fiber FOGs
3.1. High Precision FOG Setup
3.2. FOG Performance Test
3.2.1. Room Temperature Test
3.2.2. Full Temperature Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Russell, P.S.J. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Tajima, K.; Zhou, J.; Nakajima, K.; Sato, K. Ultralow loss and long length photonic crystal fiber. J. Lightwave Technol. 2004, 22, 7–10. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Russell, P.S.J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, H. Fiber Optic Gyroscope, 2nd ed.; Artech House: Boston, MA, USA, 2014. [Google Scholar]
- Kang, J.U.; Kim, D. Temperature Independent Birefringence in Polarization Maintaining Photonic Crystal Fiber. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2007, Seoul, Korea, 26 August 2007. [Google Scholar]
- Ma, P.; Song, N.; Jin, J.; Song, J.; Xu, X. Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers. Opt. Laser Technol. 2012, 44, 1829–1833. [Google Scholar] [CrossRef]
- Poletti, F.; Finazzi, V.; Monro, T.M.; Broderick, N.G.R.; Tse, V.; Richardson, D.J. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Opt. Express 2005, 13, 3728–3736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, J.M.; Taylor, J.R. Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 2009, 3, 85–90. [Google Scholar] [CrossRef]
- Kim, H.K.; Digonnet, M.J.F.; Kino, G.S. Air-core photonic-bandgap fiber-optic gyroscope. J. Lightwave Technol. 2006, 24, 3169–3174. [Google Scholar]
- Tawney, J.; Hakimi, F.; Willig, R.L. Photonic crystal fiber IFOGs. In Proceedings of the 19th International Conference on Optical Fiber Sensors, Perth, Australia, 15–18 April 2008. [Google Scholar]
- Song, N.; Cai, W.; Song, J.; Jin, J.; Wu, C. Structure optimization of small-diameter polarization-maintaining photonic crystal fiber for mini coil of space borne miniature fiber-optic gyroscope. Appl. Opt. 2015, 54, 9831–9838. [Google Scholar] [CrossRef] [PubMed]
- NKT Photonics. Available online: www.nktphotonics.com (accessed on 7 November 2017).
- Song, J.M.; Sun, K.; Li, S.; Cai, W. Phase sensitivity to temperature of the guiding mode in polarization-maintaining photonic crystal fiber. Appl. Opt. 2015, 54, 7330–7334. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J. Handbook of Optical Materials; Section 1; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
Parameter | Value |
---|---|
d/Λ | 0.56 |
Λ/λ | 3.60 |
D | 5.70 |
Thermal Expansion Coefficient (ppm) | Poisson’s Ratio (1) | Young’s Modulus (GPa) | Thermal-Optical Coefficient (1/k) | |
---|---|---|---|---|
Cladding (Silica) | 0.56 | 0.17 | 72.4 | 6 × 10−6 |
Coating (Acrylate) | 80 | 0.4 | 0.8 | — |
Shupe Constant | ||
---|---|---|
Calculation | Measured | |
NKT PM-1550 | 11.46 | 8.18 ± 0.1 |
Small-diameter PM-PCF | 8.34 | 7.45 ± 0.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, Z.; Xu, X.; Cai, W. Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application. Sensors 2018, 18, 567. https://doi.org/10.3390/s18020567
Zhang C, Zhang Z, Xu X, Cai W. Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application. Sensors. 2018; 18(2):567. https://doi.org/10.3390/s18020567
Chicago/Turabian StyleZhang, Chunxi, Zhihao Zhang, Xiaobin Xu, and Wei Cai. 2018. "Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application" Sensors 18, no. 2: 567. https://doi.org/10.3390/s18020567
APA StyleZhang, C., Zhang, Z., Xu, X., & Cai, W. (2018). Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application. Sensors, 18(2), 567. https://doi.org/10.3390/s18020567