A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe
Abstract
:1. Introduction
2. Sensor Design and Verification
2.1. Mathematical Background
2.2. Numerical Calculations for Sensor Design
2.3. Verification
3. Experiments
3.1. Measurement Techniques
3.1.1. Measurement of Void Fraction
3.1.2. Measurement of Structure Velocity
3.2. Experimental Setup
3.3. Test Matrix
4. Results and Discussion
4.1. Validation
4.2. Measurement Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Andreussi, P.; Donfrancesco, A.; Messia, M. An impedance method for the measurement of liquid hold-up in two-phase flow. Int. J. Multiph. Flow 1988, 14, 777–785. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, B.; Li, H. Application of electrical capacitance tomography to the void fraction measurement of two-phase Flow. IEEE Trans. Instrum. Meas. 2003, 52, 7–12. [Google Scholar] [CrossRef]
- Fossa, M. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows. Flow Meas. Instrum. 1998, 9, 103–109. [Google Scholar] [CrossRef]
- Georgea, D.L.; Torczynskia, J.R.; Shollenbergera, K.A.; O’Herna, T.J.; Ceccio, S.L. Validation of electrical-impedance tomography for measurements of material distribution in two-phase flows. Int. J. Multiph. Flow. 2000, 26, 549–581. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Holliday, N.; Dai, Y.; Williams, R.A.; Lucas, G. A High-Performance EIT System. IEEE Sens. J. 2005, 5, 289–299. [Google Scholar] [CrossRef]
- Lee, B.A.; Kim, B.S.; Ko, M.S.; Kim, K.Y.; Kim, S. Electrical resistance imaging of two-phase flow with a mesh grouping technique based on particle swarm optimization. Nucl. Eng. Technol. 2013, 46, 109–116. [Google Scholar] [CrossRef]
- Costigan, G.; Whalley, P.B. Slug flow regime identification from dynamic void fraction measurements in vertical air-water flows. Int. J. Multiph. Flow 1997, 23, 263–282. [Google Scholar] [CrossRef]
- Devia, F.; Fossa, M. Design and optimisation of impedance probes for void fraction measurements. Flow Meas. Instrum. 2003, 14, 139–149. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, Y.-C.; Kim, M. H. Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes. Flow Meas. Instrum. 2009, 20, 103–109. [Google Scholar] [CrossRef]
- Kerpel, K.; Ameel, B.; Schampheleire, S.; T'Joen, C.; Canière, H.; Paepe, M. Calibration of a capacitive void fraction sensor for small diameter tubes based on capacitive signal features. Appl. Therm. Eng. 2014, 63, 77–83. [Google Scholar] [CrossRef]
- Ko, M.S.; Lee, B.A.; Won, W.Y.; Lee, Y.G.; Jerng, D.W.; Kim, S. An improved electrical-conductance sensor for void fraction measurement in a horizontal pipe. Nucl. Eng. Technol. 2015, 47, 804–813. [Google Scholar] [CrossRef]
- Barraua, E.; Rivièrea, N.; Poupotb, C.; Cartellier, A. Single and double optical probes in air-water two-phase flows: Real time signal processing and sensor performance. Int. J. Multiph. Flow 1999, 25, 229–256. [Google Scholar] [CrossRef]
- Schweitzer, J.-M.; Bayle, J.; Gauthier, T. Local gas hold-up measurements in fluidized bed and slurry bubble column. Chem. Eng. Technol. 2001, 56, 1103–1110. [Google Scholar] [CrossRef]
- Murai, Y.; Tasaka, Y.; Nambu, Y.; Takeda, Y. Ultrasonic detection of moving interfaces in gas-liquid two-phase flow. Flow Meas. Instrum. 2010, 21, 356–366. [Google Scholar] [CrossRef]
- Jones, O.C.; Zuber, N. The interrelation between void fraction fluctuations and flow patterns in two-phase flow. Int. J. Multiph. Flow 1975, 2, 273–306. [Google Scholar] [CrossRef]
- Stahla, P.; Rohr, P.R. On the accuracy of void fraction measurements by single-beam gamma-densitometry for gas-liquid two-phase flows in pipes. Exp. Therm. Fluid Sci. 2004, 6, 533–544. [Google Scholar] [CrossRef]
- Griffith, P. Screening Reactor Steam/Water Piping Systems for Water Hammer; NUREG/CR-6519; Nuclear Regulatory Commission: Washington, DC, USA, 1997.
- Barnea, D. Transition from annular flow and dispersed bubble flow–unified models for the whole range of pipe inclinations. Int. J. Multiph. Flow 1986, 12, 733–744. [Google Scholar] [CrossRef]
- Afshin, J.G.; Swanand, M.B. Gas-liquid two phase flow phenomenon in near horizontal upward and downward inclined pipe orientations. Int. J. Mech. 2014, 8, 1091–1105. [Google Scholar]
- Roitberg, E.; Shemer, L.; Barnea, D. Hydrodynamic characteristics of gas-liquid slug flow in a downward inclined pipe. Chem. Eng. Sci. 2008, 63, 3605–3613. [Google Scholar] [CrossRef]
- Vieira, R.E.; Kesana, N.R.; McLaury, B.S.; Shirazi, S.A.; Torres, C.F.; Schleicher, E.; Hampel, U. Experimental investigation of the effect of 90° standard elbow on horizontal gas-liquid stratified and annular flow characteristics using dual wire-mesh sensors. Exp. Therm. Fluid Sci. 2014, 59, 72–87. [Google Scholar] [CrossRef]
- Bae, B.-U.; Yun, B.-J.; Kim, S.; Kang, K.H. Design of condensation heat exchanger for the PAFS (Passive Auxiliary Feedwater System) of APR+ (Advanced Power Reactor Plus). Ann. Nucl. Energy 2012, 46, 134–143. [Google Scholar] [CrossRef]
- Taitel, Y.; Dukler, A.E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE J. 1976, 22, 47–55. [Google Scholar] [CrossRef]
- Prasser, H.-M.; Bottger, A.; Zschau, J. A new electrode-mesh tomograph for gas-liquid flows. Flow Meas. Instrum. 1998, 9, 111–119. [Google Scholar] [CrossRef]
Variables | Value | |
---|---|---|
Conductivity (S/m) | Water | 0.005 |
Air | 0 | |
Electrode | 1.0 × 106 | |
Gap | 0 | |
Applied voltage (V) | 5 | |
Signal frequency (kHz) | 10 | |
Inner diameter of the sensor (mm) | 45 | |
Width of electrodes (De, mm) | 15 | |
Dimensionless gap size (Dg/De) | 0.25~5 |
Variables | Value | |
---|---|---|
Circumferential size (rad) | Electrode A & B | 2.54 |
Electrode C | 0.30 | |
Inner diameter of the sensor (mm) | 45 | |
Width of electrodes (De, mm) | 15 | |
Thickness of electrodes (mm) | 2 (concave) | |
Spacing between layers (mm) | 30 |
Flow Regime | ||
---|---|---|
<0.01 | - | Stratified flow |
≥0.01 | < | Annular flow |
≥ | Intermittent flow |
Instruments | Accuracy | Signal Range | Time Definition |
---|---|---|---|
Agilent 4284A LCR meter | 0.05~0.5% | Up to 20 V with 1 MHz | N/A |
NI PXI-2536 | N/A | Up to ±12 V and 100 mA | 5 × 104 cross-points/s |
NI PXIe-6368 | 3 mV for ±10 V range | Up to ±10 V | 2 × 106 samples/channel |
Run | jl (m/s) | jg (m/s) | Flow Pattern “by Map” |
---|---|---|---|
1~5 | 0.1 | 0.1, 0.5, 1, 5, 10, 12 | Stratified flow |
6 | 0.3 | 18 | Annular low |
7~11 | 0.5 | 0.1, 0.5, 1, 5, 10, 12 | Stratified flow |
12~16 | 1 | Intermittent flow | |
17~21 | 2 | Intermittent flow | |
22~25 | 3 | 0.1, 0.5, 1, 10 | Intermittent flow |
Case | jl (m/s) | jg (m/s) | jsv (m/s) | Deviation | |
---|---|---|---|---|---|
Conductance Sensor | High Speed Camera | ||||
A | 1.8 | 5.0 | 3.58 | 3.60 | −0.56% |
B | 2.2 | 0.3 | 2.65 | 2.62 | 1.2% |
C | 2.5 | 2.0 | 3.94 | 3.88 | 1.6% |
D | 3.0 | 0.5 | 3.19 | 3.16 | 0.95% |
E | 3.0 | 1.0 | 3.66 | 3.66 | 0% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-G.; Won, W.-Y.; Lee, B.-A.; Kim, S. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe. Sensors 2017, 17, 1063. https://doi.org/10.3390/s17051063
Lee Y-G, Won W-Y, Lee B-A, Kim S. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe. Sensors. 2017; 17(5):1063. https://doi.org/10.3390/s17051063
Chicago/Turabian StyleLee, Yeon-Gun, Woo-Youn Won, Bo-An Lee, and Sin Kim. 2017. "A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe" Sensors 17, no. 5: 1063. https://doi.org/10.3390/s17051063
APA StyleLee, Y.-G., Won, W.-Y., Lee, B.-A., & Kim, S. (2017). A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe. Sensors, 17(5), 1063. https://doi.org/10.3390/s17051063