Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = void fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4093 KiB  
Article
Study of Mechanical and Wear Properties of Fabricated Tri-Axial Glass Composites
by Raghu Somanna, Rudresh Bekkalale Madegowda, Rakesh Mahesh Bilwa, Prashanth Malligere Vishveshwaraiah, Prema Nisana Siddegowda, Sandeep Bagrae, Madhukar Beejaganahalli Sangameshwara, Girish Hunaganahalli Nagaraju and Madhusudan Puttaswamy
J. Compos. Sci. 2025, 9(8), 409; https://doi.org/10.3390/jcs9080409 - 1 Aug 2025
Viewed by 187
Abstract
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite [...] Read more.
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite strength, with values ranging from 1.63% to 5.31%. Tensile tests revealed that composites with 5 wt% SiO2 (GV1) exhibited superior tensile strength, Young’s modulus, and elongation due to enhanced fiber–matrix interaction. Conversely, composites with 10 wt% SiO2 (GV2) showed decreased tensile performance, indicating increased brittleness. Flexural tests demonstrated that GV1 outperformed GV2, showcasing higher flexural strength, elastic modulus, and deflection, reflecting improved load-bearing capacity at optimal filler content. Shore D hardness tests confirmed that GV1 had the highest hardness among the specimens. SEM analysis revealed wear behavior under various loads and sliding distances. GV1 exhibited minimal wear loss at lower loads and distances, while higher loads caused significant matrix detachment and fiber damage. These findings highlight the importance of optimizing SiO2 filler content to enhance epoxy composites’ mechanical and tribological performance. Full article
Show Figures

Figure 1

19 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Viewed by 195
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 203
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

15 pages, 4106 KiB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 326
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

19 pages, 8170 KiB  
Article
Study on Solid and Pore Structures of Borehole Municipal Solid Waste Samples by X-Ray CT Scanning
by Xiaobing Xu, Zhiyu Zhang, Jie Hu, Han Ke, Lei Lang and Changjie Chen
Processes 2025, 13(7), 2176; https://doi.org/10.3390/pr13072176 - 8 Jul 2025
Viewed by 309
Abstract
The microscale solid and pore structures of waste is crucial for the bio-hydro-mechanical behaviors of landfilled municipal solid waste (MSW). The quantitative analysis of the structural characteristics of MSW is still limited. In this study, borehole MSW samples at different depths (i.e., 0 [...] Read more.
The microscale solid and pore structures of waste is crucial for the bio-hydro-mechanical behaviors of landfilled municipal solid waste (MSW). The quantitative analysis of the structural characteristics of MSW is still limited. In this study, borehole MSW samples at different depths (i.e., 0 m, 2.5 m, 5 m, 7.5 m, 10 m, and 12.5 m) were drilled from a landfill. The waste composition and basic physical properties of these samples were tested in laboratory. Solid and pore structural characteristics were studied through computed tomography (CT) analysis. The results indicate that the ratio of cellulose content to lignin content (i.e., C/L) decreased from 0.85 to 0.47 with increasing depth. For solid particles, two-dimensional (2D) particles constituted the greatest fraction (60.22~72.16%), which showed a decrease with increasing depth. The deeper sample tended to have more fine particles. For pores, the void ratio decreased from 1.68 to 1.10 with increasing depth, with more small pore channels. Meanwhile, the average pore diameter coefficient (λ) decreased from 0.209 to 0.190, the pore angle (θe) decreased from 29.6° to 17.8°, the tortuosity (τ) increased from 1.129 to 1.184, and the connectivity (ce) decreased from 12.0 to 4.1. These quantitative findings can further the understanding of fluid flow behaviors in landfilled waste. Full article
(This article belongs to the Special Issue Emerging Technologies in Solid Waste Recycling and Reuse)
Show Figures

Figure 1

20 pages, 4487 KiB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 315
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 529 KiB  
Article
Is the Addition of CO2 Laser to β3-Adrenoceptor Agonist Mirabegron Effective in the Management of Overactive Bladder? Results of a Randomized Controlled Trial
by Konstantinos Kypriotis, Anastasia Prodromidou, Stavros Athanasiou, Dimitrios Zacharakis, Nikolaos Kathopoulis, Athanasios Douligeris, Veatriki Athanasiou, Lina Michala and Themos Grigoriadis
Medicina 2025, 61(7), 1198; https://doi.org/10.3390/medicina61071198 - 30 Jun 2025
Viewed by 270
Abstract
Background and Objectives: This study aimed to assess whether the addition of fractional CO2 laser therapy to standard pharmacologic treatment with Mirabegron, a β3-adrenoceptor agonist, enhances the clinical outcomes in the management of overactive bladder syndrome (OAB) in postmenopausal women. Materials [...] Read more.
Background and Objectives: This study aimed to assess whether the addition of fractional CO2 laser therapy to standard pharmacologic treatment with Mirabegron, a β3-adrenoceptor agonist, enhances the clinical outcomes in the management of overactive bladder syndrome (OAB) in postmenopausal women. Materials and Methods: Τhis was a prospective, randomized, double-blind, sham-controlled trial including 50 postmenopausal women with moderate-to-severe OAB symptoms. Participants were randomized (1:1) to receive mirabegron 50 mg daily in combination with either active fractional CO2 laser therapy (Group A) or sham laser treatment (Group B). Both groups underwent three monthly sessions of vaginal laser treatment and were followed for a total of four months. Clinical assessments were performed at baseline and monthly visits (T0–T3), using validated instruments including the Overactive Bladder Questionnaire (OAB-q), King’s Health Questionnaire (KHQ), Urinary Distress Inventory (UDI-6), Pelvic Floor Impact Questionnaire (PFIQ-7), Patient Global Impression of Improvement (PGI-I), and 3-day voiding diaries. The trial was registered at ClinicalTrials.gov (Identifier: NCT03846895). Results: Significant symptom improvement was observed within both groups over time, with reductions in urinary frequency, urgency, nocturia, and incontinence episodes, as well as improvements in quality-of-life scores. However, intergroup comparisons revealed no statistically significant differences in any primary or secondary outcomes. Both treatment modalities demonstrated similar effectiveness across all measured parameters. Conclusions: In this randomized controlled trial, the adjunctive use of fractional CO2 laser therapy did not offer additional clinical benefit beyond mirabegron monotherapy in the short-term management of OAB. These findings underscore the need for further investigation into tailored therapeutic strategies, particularly in populations with overlapping genitourinary syndrome of menopause or more refractory OAB symptoms. Full article
Show Figures

Figure 1

17 pages, 4464 KiB  
Article
Multiscale Evaluation System for Cold Patch Asphalt Mixtures: Integrating Macro-Performance Tests and Meso-Structural CT Analysis
by Wenbin Xie, Li Li and Runzhi Yang
Appl. Sci. 2025, 15(13), 7121; https://doi.org/10.3390/app15137121 - 24 Jun 2025
Viewed by 226
Abstract
The absence of standardized evaluation criteria for cold patch asphalt mixtures (CPAMs) leads to arbitrary material selection in pavement pothole repair, resulting in premature failure and recurrent damage. This study develops a comprehensive evaluation framework combining macro-performance tests with X-ray computed tomography (CT)-based [...] Read more.
The absence of standardized evaluation criteria for cold patch asphalt mixtures (CPAMs) leads to arbitrary material selection in pavement pothole repair, resulting in premature failure and recurrent damage. This study develops a comprehensive evaluation framework combining macro-performance tests with X-ray computed tomography (CT)-based meso-structural analysis. The macroscopic evaluation system incorporates six key parameters: aggregate gradation, binder–aggregate ratio, penetration strength, molding strength, residual rate, and stability retention. The CT-based meso-structural assessment quantifies void characteristics (longitudinal distribution, radial distribution, fractal dimension) and aggregate skeleton features (contact points, coordination number) through 3D reconstruction. Experimental results demonstrate that optimizing asphalt content (4.5–4.7%) with adjusted critical aggregate fractions (4.75 mm:35.0–45.0%; 2.36 mm:30.0–40.0%; 13.2 mm:1.0–1.2%; 9.5 mm:10.0–15.0%) significantly enhances repair durability. The established multiscale evaluation methodology provides a theoretical foundation for developing standardized CPAM quality specifications, particularly in emergency maintenance scenarios. Full article
Show Figures

Figure 1

15 pages, 5685 KiB  
Article
Microstructure and Mechanical Properties of Ultrafine-Grained Dual-Phase 0.1C3Mn Steel Processed by Warm Deformation
by Yongkang Wang, Chenglu Liu and Qingquan Lai
Metals 2025, 15(7), 699; https://doi.org/10.3390/met15070699 - 24 Jun 2025
Viewed by 343
Abstract
In this study, we have explored the thermomechanical processing on 0.1C3Mn steel to produce an ultrafine-grained (UFG) dual-phase (DP) microstructure. The composition was designed to allow a decrease in temperature for the warm deformation of austenite. It was found that the warm deformation [...] Read more.
In this study, we have explored the thermomechanical processing on 0.1C3Mn steel to produce an ultrafine-grained (UFG) dual-phase (DP) microstructure. The composition was designed to allow a decrease in temperature for the warm deformation of austenite. It was found that the warm deformation of austenite induced a dramatic ferrite transformation, in contrast to the absence of the formation of ferrite in the well-annealed state. Compression by 60% at 650 °C resulted in the generation of a UFG-DP microstructure with a ferrite grain size of 1.4 μm and a ferrite volume fraction of 62%. The UFG-DP 0.1C3Mn steel presents a good combination of strength, ductility and fracture resistance, and the fracture strain of the UFG-DP is higher than the as-quenched low-carbon martensite. The high fracture strain of the UFG-DP could be attributed to delayed void nucleation and constrained void growth, as revealed by the quantitative X-ray tomography. Full article
Show Figures

Figure 1

13 pages, 2396 KiB  
Article
Toxic Effects of p-Chloroaniline on Cells of Fungus Isaria fumosorosea SP535 and the Role of Cytochrome P450
by Shicong Huang, Jiahui Gao, Lin Zhou, Liujian Gao, Mengke Song and Qiaoyun Zeng
Toxics 2025, 13(6), 506; https://doi.org/10.3390/toxics13060506 - 16 Jun 2025
Viewed by 508
Abstract
Efficient methods to remediate PCA (p-chloroaniline)-polluted environments are urgent due to the widespread persistence and toxicity of PCA in the environment. Microbial degradation presents a promising approach for remediating PCA pollution. However, the PCA-degrading fungi still have yet to be explored. This study [...] Read more.
Efficient methods to remediate PCA (p-chloroaniline)-polluted environments are urgent due to the widespread persistence and toxicity of PCA in the environment. Microbial degradation presents a promising approach for remediating PCA pollution. However, the PCA-degrading fungi still have yet to be explored. This study confirmed the highly PCA-degrading efficiency of an isolated fungus, Isaria fumosorosea SP535. This fungus can achieve a PCA degradation efficiency of 100% under optimal conditions characterized by an initial PCA concentration of 1.0 mM, pH of 7.0 and a temperature of 25 °C. SEM and TEM analyses revealed that the toxicity of PCA resulted in roughened surfaces of Isaria fumosorosea SP535 hyphae, voids in the cytoplasm, and thickened cell walls. PCA addition significantly elevated the activities of cytochrome P450 monooxygenase in both cell-free extracts and microsomal fractions in the media, suggesting the important role of the P450 system in PCA metabolization by Isaria fumosorosea SP535. The results provide a microbial resource and fundamental knowledge for addressing PCA pollution. Full article
Show Figures

Figure 1

16 pages, 1452 KiB  
Article
An Investigation of the Flashing Process of Liquid Xenon in a Refueling Pipe
by Zongyu Wu, Chao Jiang, Kai Li, Yiyong Huang, Guangyu Li and Yun Cheng
Aerospace 2025, 12(6), 516; https://doi.org/10.3390/aerospace12060516 - 8 Jun 2025
Viewed by 365
Abstract
To investigate the phenomenon of liquid xenon flashing in a filling pipeline, the two-phase flow in a pipe is calculated and analyzed by using a one-dimensional homogeneous equilibrium model (HEM) and a two-dimensional mixture model. The distribution of xenon two-phase flow parameters along [...] Read more.
To investigate the phenomenon of liquid xenon flashing in a filling pipeline, the two-phase flow in a pipe is calculated and analyzed by using a one-dimensional homogeneous equilibrium model (HEM) and a two-dimensional mixture model. The distribution of xenon two-phase flow parameters along the pipeline is observed by the numerical solution of a one-dimensional HEM and simulation by Fluent. The comparison and analysis of the results of different models show that the one-dimensional HEM can quickly attach the critical mass flux faster than Fluent’s simulation under the given filling conditions, which verifies the rationality and rapidity of the numerical solution in calculating the flash process. The influence of the diameter and length of the pipeline on the flashing process of liquid xenon is analyzed by a one-dimensional theoretical model. The results show that the geometric parameters of the pipeline have a great impact on the mass flow rate and the position of the initial phase transition point, but have little effect on the void fraction at the outlet. An increase in pipe diameter and pipeline length delays the onset of phase transition. Compared with liquid oxygen and liquid nitrogen, liquid xenon is more likely to undergo a phase transition. The phase change kinetics of oxygen and nitrogen are roughly 70% as fast as those of xenon. Full article
(This article belongs to the Special Issue Numerical Simulations in Electric Propulsion)
Show Figures

Figure 1

17 pages, 3550 KiB  
Article
Meso-Scale Breakage Characteristics of Recycling Construction and Demolition Waste Subgrade Material Under Compaction Effort
by Lu Han, Weiliang Gao, Yaping Tao and Lulu Liu
Materials 2025, 18(11), 2439; https://doi.org/10.3390/ma18112439 - 23 May 2025
Cited by 1 | Viewed by 329
Abstract
The application of construction and demolition waste (CDW) as roadbed filler faces challenges due to the variable mechanical properties caused by fragile recycled brick aggregates. This study elucidates the breakage mechanism of CDW fillers under compaction effort through a combination of standardized laboratory [...] Read more.
The application of construction and demolition waste (CDW) as roadbed filler faces challenges due to the variable mechanical properties caused by fragile recycled brick aggregates. This study elucidates the breakage mechanism of CDW fillers under compaction effort through a combination of standardized laboratory compaction tests and discrete element method (DEM) simulations. Furthermore, the breakage evolution patterns of mixed fills comprising recycled concrete and brick aggregates at various mixing ratios were revealed. A DEM model was developed to characterize recycled concrete and brick aggregates, adopting polygonal clumps for particles >4.75 mm and spherical clumps for finer fractions. The results indicate that particle breakage progresses through three distinct stages: linear fragment stage (0–200 kJ/m3, 50% of total breakage), deceleration growth stage (200–1000 kJ/m3, 38% of total breakage), and residual crushing stage (1000–2684.9 kJ/m3, 12% of total breakage). Recycled concrete aggregates form a skeleton restraining deep cracks, while brick aggregates enhance stability through energy dissipation and void filling. However, exceeding 30% brick content impedes skeleton development. Critically, a 30% brick content optimizes performance, achieving peak dry density with 25% lower compression deformation than concrete-only fillers, while limiting breakage index rise. These results provide a science-based strategy to optimize CDW roadbed design, improving recycling efficiency and supporting sustainable infrastructure. Full article
Show Figures

Figure 1

20 pages, 4245 KiB  
Article
Effect of Steel Fiber on First-Cracking Behavior of Ultra-High-Performance Concrete: New Insights from Digital Image Correlation Analysis
by Xing Lu, Lei Tu, Chengjun Tan and Hua Zhao
Buildings 2025, 15(10), 1727; https://doi.org/10.3390/buildings15101727 - 20 May 2025
Viewed by 694
Abstract
The first-cracking behavior of ultra-high-performance concrete (UHPC) is critical for the functionality and durability of its structures. However, determining the first-cracking strength by the linear limit point is challenging due to the nonlinear behavior before the initial crack. This study utilizes an improved [...] Read more.
The first-cracking behavior of ultra-high-performance concrete (UHPC) is critical for the functionality and durability of its structures. However, determining the first-cracking strength by the linear limit point is challenging due to the nonlinear behavior before the initial crack. This study utilizes an improved Digital Image Correlation (DIC) technique to detect cracks and directly determine the first-cracking strength. The effect of steel fiber length, volume fraction, diameter, and shape on the first-cracking behavior was evaluated through direct tensile testing. Results indicate that incorporating steel fibers can enhance the first-cracking strength of UHPC to varying extents, ranging from 26.07% to 121.31%. Specifically, the length and volume fraction of steel fibers significantly affect the first-cracking strength, whereas the diameter and shape have minimal impact. The shape of steel fibers can influence the initial crack pattern due to stress concentration in deformed fibers. On the other hand, the inclusion of steel fibers can also negatively impact the first-cracking strength due to the introduction of air voids. Finally, considering both the positive and adverse effects of steel fibers, an updated predictive model for the first-cracking strength is proposed based on regression analysis of the experimental data. The proposed model can accurately predict the first-cracking strength of UHPC, fitting well with the existing data. Full article
Show Figures

Figure 1

12 pages, 2024 KiB  
Communication
Structural Influences on Lithium-Ion Transport in Bismuth Oxides: A Molecular Dynamics Approach
by Seong-Beom You, Byeong Jun Kim and Yong Nam Ahn
Materials 2025, 18(10), 2287; https://doi.org/10.3390/ma18102287 - 14 May 2025
Viewed by 366
Abstract
This study investigates Li-ion diffusion characteristics in Li-contained and Li-free bismuth oxide crystals, aiming to explore their potential as solid electrolytes for next-generation lithium-ion batteries. Although bismuth oxide has been widely applied as a solid electrolyte in fuel cells, its suitability for Li-ion [...] Read more.
This study investigates Li-ion diffusion characteristics in Li-contained and Li-free bismuth oxide crystals, aiming to explore their potential as solid electrolytes for next-generation lithium-ion batteries. Although bismuth oxide has been widely applied as a solid electrolyte in fuel cells, its suitability for Li-ion battery applications remains unexplored. Using molecular dynamics simulations, we analyzed the Li-ion diffusion behavior in two distinct Li-contained bismuth oxide crystals with layered and non-layered structures, as well as four Li-free bismuth oxide phases. It is demonstrated that the layered structure exhibits a simpler and more organized diffusion pathway compared to the complex and bottlenecked pathways in the non-layered structure, resulting in superior Li-ion diffusivity. For Li-free bismuth oxide phases, diffusion coefficients vary significantly depending on structural characteristics, with the highest diffusion coefficient observed in the phase with minimal void fraction. A notable inverse relationship between void fraction and Li-ion diffusivity efficiency highlights the importance of structural design in enhancing ionic transport. This study provides valuable insights into the diffusion mechanisms of Li ions in bismuth oxide systems and offers strategic guidance for designing high-performance solid electrolytes, contributing to the advancement of all-solid-state battery technologies. Full article
Show Figures

Figure 1

13 pages, 6562 KiB  
Article
An Innovative Strategy for Achieving Interface Gradient Material Using Co-Deposition Technology
by Yanxin Zhang, Liyan Lai, Yan Luo, Zhuoqing Yang and Guifu Ding
Nanomaterials 2025, 15(10), 718; https://doi.org/10.3390/nano15100718 - 9 May 2025
Cited by 1 | Viewed by 353
Abstract
In this study, high-performance SiC whisker (SiCw)-reinforced Cu matrix functionally graded materials (FGMs) were achieved through the synergy of numerical simulation and co-electrodeposition and then successfully applied as the interface of Cu and Si. A comprehensive numerical simulation framework was developed to investigate [...] Read more.
In this study, high-performance SiC whisker (SiCw)-reinforced Cu matrix functionally graded materials (FGMs) were achieved through the synergy of numerical simulation and co-electrodeposition and then successfully applied as the interface of Cu and Si. A comprehensive numerical simulation framework was developed to investigate the influence of gradient transition modes and the maximum volume fraction of SiCw on the thermal–mechanical properties in the different gradient structures. The optimized FGMs via numerical simulation were fabricated using a co-electrodeposition technique, producing a 100 μm thick coating with a SiCw volume fraction gradient ranging from 0% to 40%. The interface of Cu and SiC was void free in the FGMs and the SiCw was coated by nano-scale Cu grains during the electroplating process. The coefficient of thermal expansion in FGMs was higher than 9.78 × 10−6 K−1, which was the coefficient of thermal expansion in the Cu-40% vol. SiCw, and lower than 16.4 × 10−6 K−1, which was the coefficient of thermal expansion in pure Cu. Notably, the bonding interface area between the Cu/Si joint with the gradient-structured FGMs was more than twice that of non-graded materials. The enhanced thermal–mechanical performance was attributed to the synergistic effects of the nano-scale grain-reinforced SiCw-Cu interface and an optimized stress distribution achieved by the gradient structure. Full article
(This article belongs to the Special Issue Advanced Manufacturing on Nano- and Microscale)
Show Figures

Figure 1

Back to TopTop