Next Article in Journal
A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram
Previous Article in Journal
Cubature Information SMC-PHD for Multi-Target Tracking
Article

Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application

1
Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea
2
Research Center for Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea
3
School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
4
Department of Chemical Engineering, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-Eup, Asan City, Chungnam 336-795, Korea
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Academic Editor: Alexander Star
Sensors 2016, 16(5), 660; https://doi.org/10.3390/s16050660
Received: 25 February 2016 / Revised: 28 April 2016 / Accepted: 5 May 2016 / Published: 9 May 2016
In the present study, we fabricated a hemoglobin/gold nanoparticle (Hb/GNP) heterolayer immobilized on the Au micro-gap to confirm H2O2 detection with a signal-enhancement effect. The hemoglobin which contained the heme group catalyzed the reduction of H2O2. To facilitate the electron transfer between hemoglobin and Au micro-gap electrode, a gold nanoparticle was introduced. The Au micro-gap electrode that has gap size of 5 µm was fabricated by conventional photolithographic technique to locate working and counter electrodes oppositely in a single chip for the signal sensitivity and reliability. The hemoglobin was self-assembled onto the Au surface via chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the gold nanoparticles were adsorbed onto hemoglobin/6-MHA heterolayers by the layer-by-layer (LbL) method. The fabrication of the Hb/GNP heterolayer was confirmed by atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS). The redox property and H2O2 detection of Hb/GNP on the micro-gap electrode was investigated by a cyclic voltammetry (CV) experiment. Taken together, the present results show that the electrochemical signal-enhancement effect of a hemoglobin/nanoparticle heterolayer was well confirmed on the micro-scale electrode for biosensor applications. View Full-Text
Keywords: electrochemical biosensor; hemoglobin; gold nanoparticle; cyclic voltammetry; Au micro-gap electrochemical biosensor; hemoglobin; gold nanoparticle; cyclic voltammetry; Au micro-gap
Show Figures

Figure 1

MDPI and ACS Style

Lee, T.; Kim, T.-H.; Yoon, J.; Chung, Y.-H.; Lee, J.Y.; Choi, J.-W. Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application. Sensors 2016, 16, 660. https://doi.org/10.3390/s16050660

AMA Style

Lee T, Kim T-H, Yoon J, Chung Y-H, Lee JY, Choi J-W. Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application. Sensors. 2016; 16(5):660. https://doi.org/10.3390/s16050660

Chicago/Turabian Style

Lee, Taek, Tae-Hyung Kim, Jinho Yoon, Yong-Ho Chung, Ji Y. Lee, and Jeong-Woo Choi. 2016. "Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application" Sensors 16, no. 5: 660. https://doi.org/10.3390/s16050660

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop