Next Article in Journal
An Efficient Seam Elimination Method for UAV Images Based on Wallis Dodging and Gaussian Distance Weight Enhancement
Previous Article in Journal
Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application
Open AccessLetter

A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
*
Author to whom correspondence should be addressed.
Academic Editor: Vittorio M. N. Passaro
Sensors 2016, 16(5), 659; https://doi.org/10.3390/s16050659
Received: 22 December 2015 / Revised: 20 April 2016 / Accepted: 27 April 2016 / Published: 9 May 2016
(This article belongs to the Section Physical Sensors)
Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human’s biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods. View Full-Text
Keywords: drunk driving detection; electrocardiogram; weighted kernel; feature extraction drunk driving detection; electrocardiogram; weighted kernel; feature extraction
Show Figures

Graphical abstract

MDPI and ACS Style

Wu, C.K.; Tsang, K.F.; Chi, H.R.; Hung, F.H. A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram. Sensors 2016, 16, 659.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop