Next Article in Journal
Comparison of Raw Acceleration from the GENEA and ActiGraph™ GT3X+ Activity Monitors
Previous Article in Journal
Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors
Open AccessArticle

A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory

1
SARTI Research Group, Electronics Department, Universitat Politècnica de Catalunya (UPC), Rambla de la Exposición 24, Vilanova i la Geltrú-Barcelona 08800, Spain
2
Instituto de Ciencias del Mar (ICM-CSIC), Paseo Maritimo de la Barceloneta, 37-49, Barcelona 08003, Spain
3
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via della Pascolare, Monterotondo Scalo 16-00015, Rome, Italy
*
Authors to whom correspondence should be addressed.
Sensors 2013, 13(11), 14740-14753; https://doi.org/10.3390/s131114740
Received: 30 August 2013 / Revised: 22 October 2013 / Accepted: 22 October 2013 / Published: 30 October 2013
(This article belongs to the Section Physical Sensors)
Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals’ visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented “3D Thin-Plate Spline” warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes’ bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms. View Full-Text
Keywords: coastal fishes; cables observatories; OBSEA; automated video-imaging; colorimetric calibration; swimming rhythms; 3D Thin-Plate Spline warping coastal fishes; cables observatories; OBSEA; automated video-imaging; colorimetric calibration; swimming rhythms; 3D Thin-Plate Spline warping
Show Figures

MDPI and ACS Style

Del Río, J.; Aguzzi, J.; Costa, C.; Menesatti, P.; Sbragaglia, V.; Nogueras, M.; Sarda, F.; Manuèl, A. A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory. Sensors 2013, 13, 14740-14753. https://doi.org/10.3390/s131114740

AMA Style

Del Río J, Aguzzi J, Costa C, Menesatti P, Sbragaglia V, Nogueras M, Sarda F, Manuèl A. A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory. Sensors. 2013; 13(11):14740-14753. https://doi.org/10.3390/s131114740

Chicago/Turabian Style

Del Río, Joaquín; Aguzzi, Jacopo; Costa, Corrado; Menesatti, Paolo; Sbragaglia, Valerio; Nogueras, Marc; Sarda, Francesc; Manuèl, Antoni. 2013. "A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory" Sensors 13, no. 11: 14740-14753. https://doi.org/10.3390/s131114740

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop